

Guess Paper - 2014 Class - XII Subject - Mathematics

Que- [01] Find
$$\int_{-\pi}^{\pi} (\sin^{-93} x + x^{295}) dx$$
.

Que- [02] Let A = {-1, 0, 1, 2}, B = {-4, -2, 0, 2} and $f, g : A \to B$ be functions defined by $f(x) = x^2 - x$, $x \in A$ and $g(x) = 2 \left| x - \frac{1}{2} \right| -1$, $x \in A$ are f and g equal. Justify your answer.

Que- [03] Prove that the curves $y^2 = 4ax$ and $xy = c^2$ cut at right angles if $c^4 = 32$ a⁴.

Que- [04] Find the equation of tangent to the curve $y = \sqrt{3x-2}$ which is parallel to the line 4x-2y+5=0.

Que- [05] Evaluate :
$$\int_{0}^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx$$
.

Que- [06] Show that the function $f(x) = \begin{cases} \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1} & \text{if } x \neq 0 \\ e^{\frac{1}{x}} + 1 & \text{of } x = 0 \end{cases}$ is discontinuous at x = 0 .

Que- [07] Prove that
$$\begin{vmatrix} a & b-c & c+b \\ a+c & b & c-a \\ a-b & b+a & c \end{vmatrix} = (a+b+c)(a^2+b^2+c^2)$$
.

Que- [08] Prove that:
$$4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{70} + \tan^{-1} \frac{1}{99} = \frac{\pi}{4}$$
.

Que-[09]
$$Solve \sin^{-1} x + \sin^{-1} (1-x) = \cos^{-1} x$$
.

www.cbseguess.com

http://www.cbseguess.com/

Que- [10] If
$$y = \log\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$$
, prove that $\frac{dy}{dx} = \frac{x-1}{2x(x+1)}$.

Que- [11] Evaluate:
$$\int \sqrt{\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)} dx$$

Que- [12] Evaluate:
$$\int \frac{dx}{(\sin x - 1)(\sin x + 4)}$$
.

P.T.O.

Que- [13] Using integration, find the area of the region $\{(x,y): |x-1| \le y \le \sqrt{5-x^2} \}$.

Que- [14] A cylinder of greatest volume is inscribed in a cone, show that (i) $R = \frac{2}{3} h \tan \alpha$ (ii) $H = \frac{1}{3} h$ (iii)

Volume of the cylinder = $\frac{4}{27}\pi h^3 tan^2\alpha$. (iv) r: R = 3: 2. Where r, h, α are the radius, height and semi – vertical angle of the cone and R, H are the radius and height of the inscribed cylinder.

TALENT COACHING CENTRE

Paper Submitted By:

Name: RAHUL KUMAR

Email: rahulkumar.kumar295@gmail.com

Phone No. 9468689779

www.cbseguess.com