CBSE ANNUAL EXAMINATION [Solutions With Detailed Explanations]

SECTION - A (Each question carries 1 Mark)

- **Q01.** Find the distance of the plane 3x 4y + 12z = 3 from the origin.
- **Sol.** As the distance of plane ax + by + cz + d = 0 from a point (x_1, y_1, z_1) is $\frac{\left|ax_1 + by_1 + cz_1 + d\right|}{\sqrt{a^2 + b^2 + c^2}}$ units.

So, distance of origin (0, 0, 0) from the given plane 3x - 4y + 12z = 3 is

$$=\frac{\left|3(0)-4(0)+12(0)-3\right|}{\sqrt{(3)^2+(-4)^2+(12)^2}}=\frac{3}{\sqrt{169}}units=\frac{3}{13}units.$$

- **Q02.** Find the scalar components of the vector \overrightarrow{AB} with initial point A(2, 1) and terminal point B(-5, 7).
- Sol. As $\overrightarrow{AB} = \overrightarrow{OB} \overrightarrow{OA} = (-5\hat{i} + 7\hat{j}) (2\hat{i} + \hat{j})$ $\Rightarrow \overrightarrow{AB} = -7\hat{i} + 6\hat{j}.$

So, the scalar components of \overrightarrow{AB} are -7, 6.

- **Q03.** Find the principal value of $\tan^{-1} \sqrt{3} \sec^{-1}(-2)$.
- **Sol.** As range of $\tan^{-1} x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and that of $\sec^{-1} x$ is $\left[0, \pi\right] \left\{\frac{\pi}{2}\right\}$.

So,
$$\tan^{-1} \sqrt{3} - \sec^{-1}(-2) = \tan^{-1} \left(\tan \frac{\pi}{3} \right) - \sec^{-1} \left(\sec \frac{2\pi}{3} \right)$$

$$\therefore \qquad = \frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}.$$

- **Q04.** Given $\int e^x (\tan x + 1) \sec x \, dx = e^x f(x) + c$. Write f(x) satisfying this.
- **Sol.** Let $I = \int e^x (\tan x + 1) \sec x \, dx = e^x f(x) + c$

$$\Rightarrow e^x f(x) + c = \int e^x (\tan x + 1) \sec x \, dx$$

$$\Rightarrow = \int e^x (\sec x + \sec x \tan x) dx \qquad \Rightarrow = \int e^x \sec x dx + \int e^x \sec x \tan x dx$$

$$\Rightarrow = \sec x \int e^x dx - \int \left[\frac{d}{dx} \sec x \int e^x dx \right] dx + \int e^x \sec x \tan x dx$$

(On applying By parts in first integral)

$$\Rightarrow = e^x \sec x - \int e^x \sec x \tan x dx + \int e^x \sec x \tan x dx$$

$$\Rightarrow e^x f(x) + c = e^x \sec x + c$$

On comparing both the sides, we get

$$f(x) = \sec x$$
.

- **Q05.** Evaluate: $\int_{0}^{2} \sqrt{4-x^2} dx$.
- Sol. Let $I = \int_{0}^{2} \sqrt{4 x^{2}} dx$ $\Rightarrow I = \int_{0}^{2} \sqrt{(2)^{2} x^{2}} dx = \left[\frac{x}{2} \sqrt{4 x^{2}} + \frac{4}{2} \sin^{-1} \left(\frac{x}{2} \right) \right]_{0}^{2}$ $\Rightarrow I = \left[\frac{2}{2} \times 0 + 2 \sin^{-1} \left(\frac{2}{2} \right) \right] - \left[0 + 2 \sin^{-1} \left(0 \right) \right] = 2 \sin^{-1} \left(\sin \frac{\pi}{2} \right) = 2 \times \frac{\pi}{2}$ $\therefore I = \pi$
- **Q06.** Let A be a square matrix of order 3×3 . Write the value of |2A|, where |A| = 4.
- **Sol.** As $|kA| = k^n |A|$, where n is the order of matrix A and k is any non-zero scalar .

So,
$$|2A| = 2^3 |A| = (8)(4) = 32$$
.

Q07. If
$$A^{T} = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, then find $A^{T} - B^{T}$.

Sol. As
$$B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} \Rightarrow B^{T} = \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix}$$

So,
$$A^{T} - B^{T} = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{bmatrix}.$$

Q08. The binary operation *: $R \times R \rightarrow R$ is defined as a*b = 2a + b. Find (2*3)*4.

Sol. Since *:
$$\mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
 is defined as $a*b = 2a + b$.
So, $2*3 = 2(2) + 3 = 7$.

Then,
$$(2*3)*4 = 7*4 = 2(7) + 4 = 18$$
.

Q09. Write the value of $(\hat{\mathbf{k}} \times \hat{\mathbf{i}}) \cdot \hat{\mathbf{j}} + \hat{\mathbf{i}} \cdot \hat{\mathbf{k}}$.

Sol. Since
$$\hat{k} \times \hat{i} = \hat{j}$$
 and $i.\hat{k} = 0$
So, $(\hat{k} \times \hat{i}).\hat{j} + \hat{i}.\hat{k} = \hat{j}.\hat{j} + 0$

Q10. Find the value of x + y from the following equation:

$$2\begin{pmatrix} 1 & 3 \\ 0 & x \end{pmatrix} + \begin{pmatrix} y & 0 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 1 & 8 \end{pmatrix}.$$

Sol.
$$2 \begin{pmatrix} 1 & 3 \\ 0 & x \end{pmatrix} + \begin{pmatrix} y & 0 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 1 & 8 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & 6 \\ 0 & 2x \end{pmatrix} + \begin{pmatrix} y & 0 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 1 & 8 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} 2+y & 6 \\ 0+1 & 2x+2 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 1 & 8 \end{pmatrix} \Rightarrow \begin{pmatrix} 2+y & 6 \\ 1 & 2x+2 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 1 & 8 \end{pmatrix}$$

By equality of matrices, we have 2 + y = 5, 2x + 2 = 8 $\Rightarrow y = 3$, x = 3.

So,
$$x + y = 3 + 3 = 6$$
.

SECTION - B (Each question carries 4 Marks)

Q11. Using properties of determinants, show that:
$$\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = 4abc$$
.

Sol. Consider LHS and, let
$$\Delta = \begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix}$$

$$= \begin{vmatrix} 0 & -2c & -2b \\ b & c+a & b \\ c & c & a+b \end{vmatrix}$$
[Applying $R_1 \rightarrow R_1 - (R_2 + R_3)$]
$$= 2 \begin{vmatrix} 0 & -c & -b \\ b & c+a & b \\ c & c & a+b \end{vmatrix}$$
[Taking 2 common from R_1]

$$= 2 \begin{vmatrix} 0 & -c & -b \\ b & a & 0 \\ c & 0 & a \end{vmatrix}$$
 [Applying $R_3 \rightarrow R_3 + R_1$ and $R_2 \rightarrow R_2 + R_1$]
$$= 2 \left\{ 0 \begin{vmatrix} a & 0 \\ 0 & a \end{vmatrix} - (-c) \begin{vmatrix} b & 0 \\ c & a \end{vmatrix} - b \begin{vmatrix} b & a \\ c & 0 \end{vmatrix} \right\}$$
 [Expanding along R_1]
$$= 2 \left\{ c(ab - 0) - b(0 - ac) \right\} = 2(2abc)$$

$$= 4abc = \mathbf{RHS}.$$
 [Hence Proved.

Q12. Evaluate:
$$\int_{0}^{2} |x^3 - x| dx$$
.

Evaluate:
$$\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx.$$

Sol. Let
$$I = \int_{1}^{2} \left| x^3 - x \right| dx$$

$$\Rightarrow = \int_{-1}^{0} f(x) dx + \int_{0}^{1} f(x) dx + \int_{1}^{2} f(x) dx, \text{ where } f(x) = |x^{3} - x|$$

Now,
$$f(x) = \begin{cases} (x^3 - x), & \text{if } -1 < x < 0 \\ -(x^3 - x), & \text{if } 0 < x < 1. \end{cases}$$

 $(x^3 - x), & \text{if } 1 < x < 2$

So,
$$I = \int_{-1}^{0} (x^3 - x) dx + \int_{0}^{1} (x - x^3) dx + \int_{1}^{2} (x^3 - x) dx$$

$$\Rightarrow = \left[\frac{x^4}{4} - \frac{x^2}{2}\right]_{-1}^{0} + \left[\frac{x^2}{2} - \frac{x^4}{4}\right]_{0}^{1} + \left[\frac{x^4}{4} - \frac{x^2}{2}\right]_{1}^{2}$$

$$\Rightarrow = \left\{ \left[0 - 0\right] - \left[\frac{1}{4} - \frac{1}{2}\right] \right\} + \left\{ \left[\frac{1}{2} - \frac{1}{4}\right] - \left[0 - 0\right] \right\} + \left\{ \left[\frac{16}{4} - \frac{4}{2}\right] - \left[\frac{1}{4} - \frac{1}{2}\right] \right\}$$

$$\Rightarrow = \frac{1}{4} + \frac{1}{4} + 2 + \frac{1}{4} = \frac{11}{4}.$$

OR
Let
$$I = \int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$$
 ...(i)
$$= \int_0^{\pi} \frac{(\pi - x)\sin(\pi - x)}{1 + \cos^2(\pi - x)} dx$$
 [By using $\int_0^a f(x) dx = \int_0^a f(a - x) dx$

$$I = \int_0^{\pi} \frac{(\pi - x)\sin x}{1 + \cos^2 x} dx$$
 ...(ii)

On adding equations (i) and (ii), we get

$$2I = \int_{0}^{\pi} \frac{(x+\pi-x)\sin x}{1+\cos^{2} x} dx \qquad \Rightarrow I = \frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1+\cos^{2} x} dx$$

Let
$$f(x) = \frac{\sin x}{1 + \cos^2 x} \Rightarrow f(\pi - x) = \frac{\sin(\pi - x)}{1 + \cos^2(\pi - x)} = \frac{\sin x}{1 + \cos^2 x}$$

i.e.,
$$f(\pi - x) = f(x)$$
. So by using, $\int_{0}^{2a} f(x) dx = 2 \int_{0}^{a} f(x) dx$, if $f(2a - x) = f(x)$, we get

$$I = \left(\frac{\pi}{2}\right) \times 2 \int_{0}^{\pi/2} \frac{\sin x}{1 + \cos^{2} x} dx = \pi \int_{0}^{\pi/2} \frac{\sin x}{1 + \cos^{2} x} dx$$

Put $\cos x = t \Rightarrow \sin x dx = -dt$. Also, when $x = 0 \Rightarrow t = 1$ and, when $x = \pi/2 \Rightarrow t = 0$.

So,
$$I = \pi \int_{1}^{0} \frac{-dt}{1+t^{2}} = \pi \int_{0}^{1} \frac{dt}{1+t^{2}}$$
 $\Rightarrow I = \pi \left[\tan^{-1} t \right]_{0}^{1} = \pi \left[\tan^{-1} (1) - \tan^{-1} (0) \right]$
 $\therefore I = \pi \left(\frac{\pi}{4} - 0 \right) = \frac{\pi^{2}}{4} \text{ or, } \left(\frac{\pi}{2} \right)^{2}.$

- Q13. A ladder 5m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4m away from the wall?
- **Sol.** Let *y m* be the height of the wall at which the ladder touches. Also, let the foot of the ladder be *x m* away from the wall. Then by Pythagoras theorem, we have

$$x^2 + y^2 = 5^2 \Rightarrow y = \sqrt{25 - x^2}$$

Then, the rate of change of height (i.e., y) with respect to time t is given by,

$$\frac{dy}{dt} = -\frac{x}{\sqrt{25 - x^2}} \times \frac{dx}{dt} = -\frac{2x}{\sqrt{25 - x^2}}$$
 [As it is given that $\frac{dx}{dt} = 2cm/s$

Now, when
$$x = 4$$
 m, we have :
$$\frac{dy}{dt} = -\frac{2 \times 4}{\sqrt{25 - 4^2}} = -\frac{8}{3} \text{ cm/s}.$$

Hence, the height of the ladder on the wall is decreasing at the rate of $\frac{8}{3}$ cm/s.

- Q14. Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$. Find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c} = 18$.
- **Sol.** Let $\vec{p} = x\hat{i} + y\hat{j} + z\hat{k}$. Since \vec{p} is perpendicular to both \vec{a} and \vec{b} , so $\vec{p} \cdot \vec{a} = 0$ and $\vec{p} \cdot \vec{b} = 0$.

That means,
$$\vec{p} \cdot \vec{a} = (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{i} + 4\hat{j} + 2\hat{k}) = 0 \Rightarrow x + 4y + 2z = 0$$
 ...(i)

and,
$$\vec{p} \cdot \vec{b} = (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (3\hat{i} - 2\hat{j} + 7\hat{k}) = 0 \Rightarrow 3x - 2y + 7z = 0$$
 ...(ii)

Also, we have,
$$\vec{p} \cdot \vec{c} = 18 \Rightarrow (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (2\hat{i} - \hat{j} + 4\hat{k}) = 18 = 0 \Rightarrow 2x - y + 4z = 18$$
 ...(iii)
Solving (i) and (ii) by using Cross-multiplication, we have

$$\frac{x}{28+4} = \frac{y}{6-7} = \frac{z}{-2-12} = \lambda \qquad \Rightarrow x = 32\lambda, y = -\lambda, z = -14\lambda.$$

Substituting these values in (iii), we get $2(32\lambda) - (-\lambda) + 4(-14\lambda) = 18 \Rightarrow \lambda = 2$.

So,
$$x = 64$$
, $y = -2$, $z = -28$

Hence, the required vector \vec{p} is, $\vec{p} = 64\hat{i} - 2\hat{j} - 28\hat{k}$.

Q15. If $x = \sqrt{a^{\sin^{-1} t}}$ and $y = \sqrt{a^{\cos^{-1} t}}$, show that $\frac{dy}{dx} = -\frac{y}{x}$.

OR Differentiate
$$\tan^{-1} \left[\frac{\sqrt{1+x^2}-1}{x} \right]$$
 with respect to x .

Sol. We have
$$x = \sqrt{a^{\sin^{-1} t}}$$

Taking logarithm on both the sides, we get

$$\log x = \log \sqrt{a^{\sin^{-1} t}}$$

$$\Rightarrow \log x = \left(\frac{\log a}{2}\right) \sin^{-1} t$$

On differentiating w.r.t. t both the sides,

$$\frac{1}{x}\frac{dx}{dt} = \left(\frac{\log a}{2}\right)\frac{1}{\sqrt{1-t^2}}$$

$$\Rightarrow \frac{dx}{dt} = \left(\frac{\log a}{2}\right)\frac{x}{\sqrt{1-t^2}}$$

And,
$$y = \sqrt{a^{\cos^{-1} t}}$$

Taking logarithm on both the sides, we get

$$\log y = \log \sqrt{a^{\cos^{-1} t}}$$

$$\Rightarrow \log y = \left(\frac{\log a}{2}\right) \cos^{-1} t$$

On differentiating w.r.t. t both the sides,

$$\frac{1}{y}\frac{dy}{dt} = \left(\frac{\log a}{2}\right)\left(-\frac{1}{\sqrt{1-t^2}}\right)$$

$$\Rightarrow \frac{dy}{dt} = \left(\frac{\log a}{2}\right) \left(-\frac{y}{\sqrt{1-t^2}}\right).$$

So,
$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \left(\frac{\log a}{2}\right) \left(-\frac{y}{\sqrt{1-t^2}}\right) \left(\frac{2}{\log a}\right) \frac{\sqrt{1-t^2}}{x} = -\frac{y}{x}$$

$$\therefore \frac{dy}{dx} = -\frac{y}{x}.$$
 [Hence Proved.

OR

Let
$$y = \tan^{-1} \left[\frac{\sqrt{1+x^2} - 1}{x} \right]$$

Put $x = \tan \theta \Rightarrow \theta = \tan^{-1} x$...(i)

So,
$$y = \tan^{-1} \left[\frac{\sqrt{1 + \tan^2 \theta} - 1}{\tan \theta} \right] = \tan^{-1} \left[\frac{\sec \theta - 1}{\tan \theta} \right]$$
 $\Rightarrow y = \tan^{-1} \left[\frac{\frac{1}{\cos \theta} - 1}{\frac{\sin \theta}{\cos \theta}} \right]$ $\Rightarrow y = \tan^{-1} \left[\frac{1 - \cos \theta}{\frac{\sin \theta}{\cos \theta}} \right]$ $\Rightarrow y = \tan^{-1} \left[\frac{2 \sin^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} \right] = \tan^{-1} \left(\tan \frac{\theta}{2} \right) = \frac{\theta}{2}$

$$\Rightarrow y = \frac{1}{2}(\tan^{-1} x)$$
 [By (i)

On differentiating with respect to x, we have:

$$\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{1+x^2}$$

$$\therefore \frac{dy}{dx} = \frac{1}{2(1+x^2)}$$

- $\therefore \frac{dy}{dx} = \frac{1}{2(1+x^2)}.$ **Q16.** Show that $f: \mathbb{N} \to \mathbb{N}$, given by $f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x-1, & \text{if } x \text{ is even} \end{cases}$ is both one-one and onto.
 - Consider the binary operations *: $R \times R \rightarrow R$ and o: $R \times R \rightarrow R$ defined as a * b = |a b| and a o b = a for all a, b \in R. Show that '*' is commutative but not associative, 'o' is associative but not commutative.
- Suppose $f(x_1) = f(x_2)$. If x_1 is odd and x_2 is even, then we will have $x_1 + 1 = x_2 1$, i.e., Sol. $x_2 - x_1 = 2$ which is impossible. Similarly, the possibility of x_1 being even and x_2 being odd is ruled out, using the same argument. Therefore, both x_1 and x_2 must be either odd or even. Suppose both x_1 and x_2 are odd. Then,

$$f(x_1) = f(x_2) \Rightarrow x_1 + 1 = x_2 + 1 \Rightarrow x_1 = x_2$$

Similarly if both x_1 and x_2 are even. Then,

$$f(x_1) = f(x_2) \Rightarrow x_1 - 1 = x_2 - 1 \Rightarrow x_1 = x_2$$
.

Thus, f is one-one.

Also, any odd number 2r+1 in the co-domain N is the image of 2r+2 in the domain N and any even number 2r in the co-domain N is the image of 2r-1 in the domain N. Thus, f is onto.

OR

It is given that *: R \times R \rightarrow R and o: R \times R \rightarrow R is defined as a*b = |a-b| and $a \circ b = a$ for all $a, b \in \mathbb{R}$. For $a, b \in \mathbb{R}$, we have: $a * b = |a - b| \Rightarrow b * a = |b - a| = |-(a - b)| = |a - b|$.

So, a * b = b * a. Thus, the operation * is commutative.

It can be observed that,

$$(1*2)*3 = (|1-2|)*3 = 1*3 = |1-3| = 2$$
. Also, $1*(2*3) = 1*(|2-3|) = 1*1 = |1-1| = 0$.

 \therefore (1*2)*3 \neq 1*(2*3) where 1, 2, 3 \in R. Thus, the operation * is not associative.

Now, consider the operation *o*:

It can be observed that $1 \circ 2 = 1$ and $2 \circ 1 = 2$.

- \therefore 1 o 2 \neq 2 o 1 where 1, 2 \in R.
- \therefore The operation o is not commutative.

Let $a, b, c \in \mathbb{R}$. Then, we have: $(a \circ b) \circ c = a \circ c = a$. Also, $a \circ (b \circ c) = a \circ b = a$.

$$\therefore$$
 $(a \circ b) \circ c = a \circ (b \circ c)$

Thus, the operation o is associative.

- Q17. Two cards are drawn simultaneously (without replacement) from a well-shuffled pack of 52 cards. Find the mean and variance of the number of red cards.
- **Sol.** Let the number of red cards drawn be denoted by X which is a random variable. Clearly, X can take the values 0, 1 or 2.

:. P (X = 0) = P (two non-red cards) =
$$\frac{^{26}C_2}{^{52}C_2} = \frac{25}{102}$$

P (X = 1) = P (one red card and one non-red cards) =
$$\frac{{}^{26}C_1 \times {}^{26}C_1}{{}^{52}C_2} = \frac{52}{102}$$

:. P (X = 2) = P (two red cards) =
$$\frac{^{26}C_2}{^{52}C_2} = \frac{25}{102}$$
.

Therefore, mean of X = E(X) =
$$\sum_{i=1}^{n} X_i P(X_i) = 0 \times \frac{25}{102} + 1 \times \frac{52}{102} + 2 \times \frac{25}{102} = 1$$

Also,
$$Var(X) = \sum_{i=1}^{n} X_{i}^{2} P(X_{i}) - [E(X)]^{2}$$

$$\Rightarrow = \left[0^2 \times \frac{25}{102} + 1^2 \times \frac{52}{102} + 2^2 \times \frac{25}{102}\right] - \left(1\right)^2 = \frac{76}{51} - 1$$

$$\therefore \operatorname{Var}(X) = \frac{25}{51}.$$

Q18. Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.

OR Find the particular solution of the differential equation: $x(x^2 - 1)\frac{dy}{dx} = 1$; y = 0 when x = 2.

Sol. Let C denote the family of circles in the second quadrant and touching the coordinate axes. Let (-h, h) be the coordinate of the centre of any member of this family. It is clear that the radius will be h.

So, equation representing this family is: $(x+h)^2 + (y-h)^2 = h^2$...(i)

i.e.,
$$x^2 + y^2 + 2hx - 2hy + h^2 = 0$$
 ...(ii)

On differentiating (ii) w.r.t. x, we get $2x + 2y \frac{dy}{dx} + 2h - 2h \frac{dy}{dx} = 0$

$$\Rightarrow x + y \frac{dy}{dx} = h \left(\frac{dy}{dx} - 1 \right) \qquad \Rightarrow h = \frac{x + yy'}{y' - 1}.$$

Substituting the value of h in equation (i), we get

$$\left(x + \frac{x + yy'}{y' - 1}\right)^2 + \left(y - \frac{x + yy'}{y' - 1}\right)^2 = \left(\frac{x + yy'}{y' - 1}\right)^2$$

$$\Rightarrow \left[xy' - x + x + yy'\right]^2 + \left[yy' - y - x - yy'\right]^2 = \left[x + yy'\right]^2 \qquad \Rightarrow (x + y)^2 (y')^2 + (x + y)^2 = (x + yy')^2$$

$$\therefore (x + y)^2 \left[(y')^2 + 1\right] = \left[x + yy'\right]^2$$

i.e.,
$$(x+y)^2 \left[\left(\frac{dy}{dx} \right)^2 + 1 \right] = \left[x + y \frac{dy}{dx} \right]^2$$

This is the required differential equation representing the given family of circles.

OR We have,
$$x(x^2 - 1)\frac{dy}{dx} = 1$$

$$\Rightarrow dy = \frac{dx}{x(x^2 - 1)} \Rightarrow \int dy = \int \frac{dx}{x(x - 1)(x + 1)} \dots (i)$$
Consider, $\frac{1}{x(x - 1)(x + 1)} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 1}$

$$\Rightarrow 1 = (A + B + C)x^2 + (B - C)x - A.$$

On equating the coefficients of like terms, we get: A + B + C = 0, B - C = 0, -A = 1.

On solving these equations, we have: A = -1, $B = \frac{1}{2}$, $C = \frac{1}{2}$.

So by (i) we have:
$$\int dy = -\int \frac{1}{x} dx + \frac{1}{2} \int \frac{1}{x-1} dx + \frac{1}{2} \int \frac{1}{x+1} dx$$
$$\Rightarrow y = -\log|x| + \frac{1}{2}\log|x-1| + \frac{1}{2}\log|x+1| + k$$
$$\Rightarrow y = \frac{1}{2}\log\left|\frac{x^2 - 1}{x^2}\right| + k \qquad \dots (ii)$$

Now since y = 0, when x = 2. So, $0 = \frac{1}{2} \log \left| \frac{4-1}{4} \right| + k \Rightarrow k = \frac{1}{2} \log \left(\frac{4}{3} \right)$

Substituting the value of k in equation (ii), we get

$$y = \frac{1}{2}\log\left|\frac{x^2 - 1}{x^2}\right| + \frac{1}{2}\log\left(\frac{4}{3}\right)$$

$$\therefore \quad y = \frac{1}{2}\log\left|\frac{4(x^2 - 1)}{3x^2}\right|.$$

This is the required particular solution of the given differential equation.

Q19. If
$$x = a \left(\cos t + \log \tan \frac{t}{2} \right)$$
, $y = a \sin t$, find $\frac{d^2y}{dt^2}$ and $\frac{d^2y}{dx^2}$.

Sol. Given
$$x = a \left(\cos t + \log \tan \frac{t}{2} \right)$$
 [On differentiating with respect to t both the sides

$$\frac{dx}{dt} = a \left(-\sin t + \frac{1}{\tan \frac{t}{2}} \times \sec^2 \left(\frac{t}{2} \right) \times \frac{1}{2} \right) = a \left(-\sin t + \frac{\cos \frac{t}{2}}{\sin \frac{t}{2}} \times \frac{1}{\cos^2 \frac{t}{2}} \times \frac{1}{2} \right) = a \left(-\sin t + \frac{1}{\sin t} \right)$$

$$\Rightarrow \frac{dx}{dt} = a\cos t \cot t \qquad \dots (i$$

Also, $y = a \sin t$

[On differentiating with respect to t both the sides

$$\Rightarrow \frac{dy}{dt} = a\cos t \qquad \dots (ii)$$

Again differentiating with respect to t both the sides, we have

$$\frac{d^2y}{dt^2} = \frac{d}{dt}(a\cos t) = a(-\sin t)$$
$$\therefore \frac{d^2y}{dt^2} = -a\sin t.$$

Now, by (i) and (ii), we have

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = (a\cos t) \times \frac{1}{a\cos t \cot t}$$
 $\Rightarrow \frac{dy}{dx} = \tan t$

On differentiating with respect to x both the sides

$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\tan t) = (\sec^2 t)\frac{dt}{dx} \qquad \Rightarrow \frac{d^2y}{dx^2} = \sec^2 t \times \frac{1}{a \cos t \cot t}$$

$$\therefore \frac{d^2y}{dx^2} = \frac{\sec^3 t \tan t}{a}.$$

- **Q20.** Find the coordinates of the point where the line through the points (3,-4,-5) and (2,-3, 1) crosses the plane 3x + 2y + z + 14 = 0.
- **Sol.** The equation of the straight line passing through the points (3,-4,-5) and (2,-3,1) is:

$$\frac{x-3}{2-3} = \frac{y-(-4)}{-3-(-4)} = \frac{z-(-5)}{1-(-5)} \implies \frac{x-3}{-1} = \frac{y+4}{1} = \frac{z+5}{6} = \lambda \text{ (say)}$$

The coordinates of any random point on this line is $P(3-\lambda, \lambda-4, 6\lambda-5)$.

Consider that the line intersects the given plane 3x + 2y + z + 14 = 0 at $P(3 - \lambda, \lambda - 4, 6\lambda - 5)$.

So,
$$3(3-\lambda) + 2(\lambda - 4) + (6\lambda - 5) + 14 = 0$$
 $\Rightarrow \lambda = -2$

Thus, the required **point of intersection** is P(3-(-2), (-2)-4, 6(-2)-5) i.e., P(5,-6,-17).

Q21. Find the particular solution of the following differential equation:

$$x\frac{dy}{dx} - y + x\sin\left(\frac{y}{x}\right) = 0$$
, given that when $x = 2$, $y = \pi$.

Sol. We have
$$x \frac{dy}{dx} - y + x \sin\left(\frac{y}{x}\right) = 0$$
 $\Rightarrow \frac{dy}{dx} = \frac{y}{x} - \sin\left(\frac{y}{x}\right)$...(i)

It is evident that the given differential equation is homogeneous.

So, put
$$y = vx \implies \frac{dy}{dx} = v + x \frac{dv}{dx}$$
 (On differentiating w.r.t. x both sides)

Substituting these in equation (i), we have

$$v + x \frac{dv}{dx} = \frac{vx}{x} - \sin\left(\frac{vx}{x}\right) \qquad \Rightarrow v + x \frac{dv}{dx} = v - \sin v \qquad \Rightarrow x \frac{dv}{dx} = -\sin v$$

$$\Rightarrow x \frac{dv}{dx} = -\sin v \qquad \Rightarrow \int \csc v \, dv = -\int \frac{dx}{x}$$

$$\Rightarrow \log\left|\csc v - \cot v\right| = -\log\left|x\right| + \log\left|k\right| \qquad \Rightarrow \log\left|\csc v - \cot v\right| = \log\left|\frac{k}{x}\right|$$

$$\Rightarrow \csc\left(\frac{y}{x}\right) - \cot\left(\frac{y}{x}\right) = \frac{k}{x} \qquad \Rightarrow k \sin\left(\frac{y}{x}\right) = x \left[1 - \cos\left(\frac{y}{x}\right)\right]$$

It is given that when x = 2, $y = \pi$.

So,
$$k \sin\left(\frac{\pi}{2}\right) = 2\left[1 - \cos\left(\frac{\pi}{2}\right)\right]$$
 $\Rightarrow k(1) = 2[1 - 0]$ $\Rightarrow k = 2$.
Thus, $x\left[1 - \cos\left(\frac{y}{x}\right)\right] = 2\sin\left(\frac{y}{x}\right)$.

This is the required particular solution of the given differential equation.

Q22. Prove that:
$$\cos^{-1} \left(\frac{12}{13} \right) + \sin^{-1} \left(\frac{3}{5} \right) = \sin^{-1} \left(\frac{56}{65} \right)$$
.

Sol. Let
$$\sin^{-1}\left(\frac{3}{5}\right) = x \Rightarrow \sin x = \frac{3}{5} \Rightarrow \tan x = \frac{3}{4} \Rightarrow x = \tan^{-1}\left(\frac{3}{4}\right)$$
.

$$\therefore \sin^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right) \qquad \dots (i)$$

Also, let
$$\cos^{-1}\left(\frac{12}{13}\right) = y \Rightarrow \cos y = \frac{12}{13} \Rightarrow \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1}\left(\frac{5}{12}\right)$$

$$\therefore \cos^{-1}\left(\frac{12}{13}\right) = \tan^{-1}\left(\frac{5}{12}\right) \dots (ii)$$
And, let $\sin^{-1}\left(\frac{56}{65}\right) = z \Rightarrow \sin z = \frac{56}{65} \Rightarrow \tan z = \frac{56}{33} \Rightarrow z = \tan^{-1}\left(\frac{56}{33}\right)$

$$\therefore \sin^{-1}\left(\frac{56}{65}\right) = \tan^{-1}\left(\frac{56}{33}\right) \dots (iii)$$

Now, we take LHS:

$$\cos^{-1}\left(\frac{12}{13}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{5}{12}\right) + \tan^{-1}\left(\frac{3}{4}\right)$$

$$= \tan^{-1}\left[\frac{\frac{5}{12} + \frac{3}{4}}{1 - \frac{5}{12} \cdot \frac{3}{4}}\right] = \tan^{-1}\left[\frac{20 + 36}{48 - 15}\right]$$

$$= \tan^{-1}\left(\frac{56}{33}\right) \qquad [Using equation (iii)]$$

$$= \sin^{-1}\left(\frac{56}{65}\right) = \mathbf{RHS}. \qquad [Hence Proved.]$$

SECTION - C (Each question carries 6 Marks)

Q23. Evaluate:
$$\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx$$
. Evaluate:
$$\int \frac{x^2+1}{(x-1)^2(x+3)} dx$$
.

Sol. Let
$$I = \int \sin^{-1} x \left(\frac{x}{\sqrt{1 - x^2}} \right) dx$$

Integrating by parts taking $\sin^{-1} x$ as first function and $\frac{x}{\sqrt{1-x^2}}$ as second function.

$$I = \sin^{-1} x \int \left(\frac{x}{\sqrt{1 - x^2}}\right) dx - \int \left[\frac{d}{dx} (\sin^{-1} x) \int \left(\frac{x}{\sqrt{1 - x^2}}\right) dx\right] dx$$

$$\Rightarrow = -\frac{1}{2} \sin^{-1} x \int \left(\frac{-2x}{\sqrt{1 - x^2}}\right) dx + \frac{1}{2} \int \left[\frac{1}{\sqrt{1 - x^2}} \int \left(\frac{-2x}{\sqrt{1 - x^2}}\right) dx\right] dx$$

$$\Rightarrow = -\frac{1}{2} \sin^{-1} x \left[2\sqrt{1 - x^2}\right] + \frac{1}{2} \int \frac{1}{\sqrt{1 - x^2}} \left[2\sqrt{1 - x^2}\right] dx$$

$$\Rightarrow = -\sqrt{1 - x^2} \sin^{-1} x + \int 1 dx \qquad \Rightarrow I = -\sqrt{1 - x^2} \sin^{-1} x + x + k dx$$

OR Let
$$I = \int \frac{x^2 + 1}{(x - 1)^2 (x + 3)} dx$$
 ...(i)

Consider
$$\frac{x^2 + 1}{(x-1)^2(x+3)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+3}$$

$$\Rightarrow x^2 + 1 = A(x-1)(x+3) + B(x+3) + C(x-1)^2.$$

On equating the coefficients of like terms, we obtain $A = \frac{3}{8}$, $B = \frac{1}{2}$, $C = \frac{5}{8}$.

So by (i), we have:
$$I = \frac{3}{8} \int \frac{1}{(x-1)} dx + \frac{1}{2} \int \frac{1}{(x-1)^2} dx + \frac{5}{8} \int \frac{1}{(x+3)} dx$$
$$\Rightarrow I = \frac{3}{8} \log|x-1| + \frac{1}{2} \left(-\frac{1}{x-1} \right) + \frac{5}{8} \log|x+3| + k$$

$$\therefore I = \frac{3}{8}\log|x-1| + \frac{5}{8}\log|x+3| - \frac{1}{2(x-1)} + k.$$

Q24. Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.

OR An open box with a square base is to be made out of a given quantity of cardboard of area c^2 square units. Show that the maximum volume of the box is $\frac{c^3}{6\sqrt{3}}$ cubic units.

Sol.

Let S be the curved surface area of the cylinder.

So,
$$S = 2\pi rh$$
 $\Rightarrow S = 2\pi r \left(1 - \frac{r}{R}\right)H$

Now, differentiating with respect to r, we get:

Again differentiating with respect to r, we get:

For the points of local maxima or minima, $\frac{dS}{dr} = 0$

i.e.,
$$2\pi H \left(1 - \frac{2r}{R}\right) = 0 \Rightarrow r = \frac{R}{2}$$

Now,
$$\frac{d^2S}{dr^2}\Big|_{at \ r=\frac{R}{2}} = -\frac{4\pi H}{R} < 0$$
.

So, curved surface area S, of the cylinder is maximum at r = R/2.

Hence, the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.

OR

Let the length, breadth and height of the open box be x, x and h units respectively.

$$\therefore \text{ Area of cardboard used in the open box} = x^2 + 4xh \implies c^2 = x^2 + 4xh \implies h = \frac{c^2 - x^2}{4x}.$$

Suppose V be the volume of the open box.

$$\therefore V = x^2 h = x^2 \left(\frac{c^2 - x^2}{4x} \right) \qquad \Rightarrow V = \frac{1}{4} (c^2 x - x^3)$$

On differentiating w.r.t. x, we have:
$$\frac{dV}{dx} = \frac{1}{4}(c^2 - 3x^2)$$

Again differentiating w.r.t. x, we have:
$$\frac{d^2V}{dx^2} = -\frac{3}{2}x$$

For the points of local maxima or minima, $\frac{dV}{dx} = 0$

Let H and R be the height and radius of the base of the cone ABC respectively. Suppose the radius and height of the cylinder inscribed in the cone be *r* and *h* respectively

Now, DF =
$$r$$
. AD = H – h .

As ΔADF~ΔAOC

So,
$$\frac{AD}{AO} = \frac{DF}{OC} \Rightarrow \frac{H - h}{H} = \frac{r}{R}$$

i.e.,
$$h = \left(1 - \frac{r}{R}\right)H$$
.

$$\Rightarrow$$
 S = $2\pi H \left(r - \frac{r^2}{R} \right)$

$$\frac{dS}{dr} = 2\pi H \left(1 - \frac{2r}{R} \right)$$

$$\frac{d^2S}{dr^2} = 2\pi H \left(-\frac{2}{R}\right) = -\frac{4\pi H}{R}$$

i.e.,
$$\frac{1}{4}(c^2 - 3x^2) = 0$$
 $\Rightarrow x = \frac{c}{\sqrt{3}}$ [Rejecting $x = -\frac{c}{\sqrt{3}}$ as, x can't be negative.
Now, $\frac{d^2V}{dx^2}\Big|_{at \ x = \frac{c}{\sqrt{3}}} = -\left(\frac{3}{2}\right)\left(\frac{c}{\sqrt{3}}\right) < 0$

Hence, volume of the open box is maximum when $x = \frac{c}{\sqrt{3}}$ units.

Now, maximum volume of the open box is, $V = \frac{1}{4} \left(c^2 \left(\frac{c}{\sqrt{3}} \right) - \left(\frac{c}{\sqrt{3}} \right)^3 \right) = \frac{1}{4} \left(\frac{c^3}{\sqrt{3}} - \frac{c^3}{3\sqrt{3}} \right)$

i.e.,
$$V = \frac{c^3}{4\sqrt{3}} \left(1 - \frac{1}{3} \right)$$
 $\Rightarrow V = \frac{c^3}{6\sqrt{3}}$ cubic units. [Hence Proved.

- **Q25.** Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin three times and notes the number of heads. If she gets 1, 2, 3, or 4 she tosses a coin once and notes whether a head or tail is obtained. If she obtained exactly one head, what is the probability that she threw 1, 2, 3, or 4 with the die?
- **Sol.** Let E_1 be the event that the outcome on the die is 5 or 6 and E_2 be the event that the outcome on the die is 1, 2, 3, or 4. So, $P(E_1) = 2/6 = 1/3$, $P(E_2) = 4/6 = 2/3$.

Let E be the event of getting exactly one head.

 $P(E|E_1)$ = Probability of getting exactly one head by tossing the coin three times if she gets 5 or 6 = 3/8. $P(E|E_2)$ = Probability of getting exactly one head in a single throw of coin if she gets 1, 2, 3, or 4 = 1/2.

Observe that the probability that the girl threw 1, 2, 3, or 4 with the die, if she obtained exactly one head, is given by $P(E_2|E)$.

Using Bayes' theorem, we have

$$P(E_{2}|E) = \frac{P(E_{2})P(E|E_{2})}{P(E_{1})P(E|E_{1}) + P(E_{2})P(E|E_{2})}$$

$$\Rightarrow = \frac{\frac{2}{3} \times \frac{1}{2}}{\frac{1}{3} \times \frac{3}{8} + \frac{2}{3} \times \frac{1}{2}} = \frac{8}{11}.$$

- Q26. A dietician wishes to mix two types of foods in such a way that the vitamin contents of the mixture contains at last 8 units of vitamin A and 10 units of vitamin C. Food I contains 2 units/kg of vitamin A and 1 unit/kg of vitamin C while Food II contains 1 unit/kg of vitamin A and 2 units/kg of vitamin C. It costs ₹5 per kg to purchase Food I and ₹7 per kg to purchase Food II. Determine the minimum cost of such a mixture. Formulate the above as a LPP and solve it graphically.
- **Sol**. Let the dietician mix x kg of food I and y kg of food II to make the mixture.

To minimize,
$$Z = \sqrt[3]{5x + 7y}$$

Subject to the constraints:
$$2x + y \ge 8$$
 ...(i)

$$x + 2y \ge 10$$
 ...(ii)

and
$$x, y \ge 0$$

Considering the equations corresponding to the inequations (i) and (ii),

$$2x + y = 8$$

х	0	4
Y	8	0

$$x + 2y = 10$$

х	0	10
Y	5	0

Take the testing points as (0, 0) for (i), we have: $2(0) + (0) \ge 8 \Rightarrow 0 \ge 8$, which is false.

Take the testing points as (0, 0) for (ii), we have: $(0) + 2(0) \ge 10 \Rightarrow 0 \ge 10$, which is false.

The shaded region as shown in the given figure is the feasible region, which is **unbounded**. The coordinates of the corner points of the feasible region are B(0, 8), P(2, 4) and C(10, 0).

So, Value of Z at B(0, 8) = ₹(5×0 + 7×8) = ₹56

Value of Z at P(2, 4) = ₹(5×2 + 7×4) = ₹38

Value of Z at C(10, 0) = ₹(5×10 + 7×0) = ₹50

Thus, the minimum value of Z is 38.

Since the feasible region is unbounded, we need to verify whether Z = 38 is minimum value of given objective function or not.

For this, draw a graph of 5x + 7y < 38.

We observe that the open half plane determined by 5x + 7y < 38 has no points in common with the feasible region. So, Z is minimum for x = 2 and y = 4 and the minimum value of Z is ₹38.

Thus, the minimum cost of the mixture is ₹38 for 2kg of food I and 4kg of food II.

Q27. Find area of the region $\{(x,y): x^2 + y^2 \le 4, x + y \ge 2\}$.

Sol.

We have
$$\{(x,y): x^2 + y^2 \le 4, x + y \ge 2\}$$
.

Consider
$$x^2 + y^2 = 4$$
 ...(i), $x + y = 2$...(ii).

On solving curves (i) and (ii) simultaneously to get the point of intersection, we have

$$x^{2} + (2-x)^{2} = 4 \Rightarrow 2x^{2} - 4x = 0 \Rightarrow 2x(x-2) = 0$$

$$\therefore \quad x = 0, \ x = 2 \Rightarrow y = 2, \ y = 0.$$

So, we have (0, 2) and (2, 0) as the point of intersections of given two curves.

∴ Required area = Area (OACBO) – Area (OABO)

$$\Rightarrow = \int_{0}^{2} y_{c} dx - \int_{0}^{2} y_{l} dx$$

$$\Rightarrow = \int_{0}^{2} \sqrt{2^{2} - x^{2}} dx - \int_{0}^{2} (2 - x) dx \Rightarrow = \left[\frac{x}{2} \sqrt{4 - x^{2}} + \frac{4}{2} \sin^{-1} \left(\frac{x}{2} \right) \right]_{0}^{2} - \left[\frac{(2 - x)^{2}}{2 \times (-1)} \right]_{0}^{2}$$

$$\Rightarrow = \left[\left(0 + 2 \sin^{-1} \left(\frac{2}{2} \right) \right) - \left(0 + 2 \sin^{-1} (0) \right) \right] + \frac{1}{2} \left[0 - 4 \right]$$

$$\Rightarrow = (\pi - 2) \text{ sq.units}.$$

- **Q28.** Find the coordinates of the foot of perpendicular and the length of the perpendicular drawn from the point P(5, 4, 2) to the line $\vec{r} = -\hat{i} + 3\hat{j} + \hat{k} + \lambda(2\hat{i} + 3\hat{j} \hat{k})$. Also find the image of P in this line.
- **Sol.** The given point is P(5, 4, 2) and the given line AB (say) is $\vec{r} = -\hat{i} + 3\hat{j} + \hat{k} + \lambda(2\hat{i} + 3\hat{j} \hat{k})$.

Cartesian equation of line is: $\frac{x+1}{2} = \frac{y-3}{3} = \frac{z-1}{-1} = \lambda$.

So, the coordinates of any random point Q on this line is $Q(2\lambda - 1, 3\lambda + 3, 1 - \lambda)$.

Let Q be the foot of the perpendicular on the given line for some value of λ .

Direction Ratios of PQ are $2\lambda - 1 - 5$, $3\lambda + 3 - 4$, $1 - \lambda - 2$ i.e., $2\lambda - 6$, $3\lambda - 1$, $-1 - \lambda$.

As PQ is perpendicular to given line.

So,
$$2(2\lambda - 6) + 3(3\lambda - 1) - 1(-1 - \lambda) = 0 \Rightarrow \lambda = 1$$
.

 \therefore Coordinates of the **Foot of perpendicular** on the line is Q(1,6,0).

And, Length of perpendicular is $PQ = \sqrt{(1-5)^2 + (6-4)^2 + (0-2)^2}$ $\Rightarrow PQ = 2\sqrt{6}$ units.

Also, let the image of P in the line be R(h, s, p). Then Q will be the mid-point of PQ.

So,
$$Q(1,6,0) = Q\left(\frac{5+h}{2}, \frac{4+s}{2}, \frac{2+p}{2}\right)$$
 $\Rightarrow h = -3, s = 8, p = -2.$

Hence, the **Image of point P** in the given line is R(-3, 8, -2).

Q29. Using matrices, solve the following system of linear equations:

$$3x + 4y + 7z = 4$$
; $2x - y + 3z = -3$; $x + 2y - 3z = 8$.

Sol. The given system of equations is: 3x + 4y + 7z = 4;

$$2x-y+3z=-3;$$

 $x+2y-3z=8$

$$x + 2y - 3z = 8$$

By using matrix method: let $A = \begin{bmatrix} 3 & 4 & 7 \\ 2 & -1 & 3 \\ 1 & 2 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 4 \\ -3 \\ 8 \end{bmatrix}$ and, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$.

Since
$$AX = B$$
 $\Rightarrow X = A^{-1}B$...(i)

Now,
$$|A| = \begin{vmatrix} 3 & 4 & 7 \\ 2 & -1 & 3 \\ 1 & 2 & -3 \end{vmatrix} = 3(3-6) - 4(-6-3) + 7(4+1)$$

 \Rightarrow A is **non-singular** and hence, it is invertible i.e., A⁻¹ exists. $A \mid A \mid = 62 \neq 0$

Consider C_{ij} be the cofactors of element a_{ij} in matrix A, we have

$$C_{11} = -3,$$
 $C_{12} = 9,$ $C_{13} = 5$
 $C_{21} = 26,$ $C_{22} = -16,$ $C_{23} = -2$
 $C_{31} = 19,$ $C_{32} = 5,$ $C_{33} = -11$

So,
$$adjA = \begin{bmatrix} -3 & 9 & 5 \\ 26 & -16 & -2 \\ 19 & 5 & -11 \end{bmatrix}^{T} = \begin{bmatrix} -3 & 26 & 19 \\ 9 & -16 & 5 \\ 5 & -2 & -11 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{62} \begin{bmatrix} -3 & 26 & 19\\ 9 & -16 & 5\\ 5 & -2 & -11 \end{bmatrix}$$

Now by (i), we have $X = A^{-1}B$

So,

$$X = \frac{1}{62} \begin{bmatrix} -3 & 26 & 19 \\ 9 & -16 & 5 \\ 5 & -2 & -11 \end{bmatrix} \begin{bmatrix} 4 \\ -3 \\ 8 \end{bmatrix}$$

$$\Rightarrow = \frac{1}{62} \begin{bmatrix} -12 - 78 + 152 \\ 36 + 48 + 40 \\ 20 + 6 - 88 \end{bmatrix}$$

$$\Rightarrow = \frac{1}{62} \begin{bmatrix} 62 \\ 124 \\ -62 \end{bmatrix}$$

By equality of matrices, we get

i.e.,

$$x = 1$$
, $y = 2$, $z = -1$

Hence, x = 1, y = 2, z = -1 is the required solution.