NTA JEE 7th to 9th Jan 2020

Application No.	
Candidate Name	
Roll No.	
Test Date	08/01/2020
Test Time	2:30 PM - 5:30 PM
Subject	BTECH

Section: Physics

Q.1

As shown in the figure, a battery of emf ϵ is connected to an inductor L and resistance R in series. The switch is closed at t=0. The total charge that flows from the battery, between t=0 and $t=t_c$ (t_c is the time constant of the circuit) is:

Options

$$1 \frac{\epsilon L}{R^2} \left(1 - \frac{1}{e} \right)$$

2.
$$\frac{\epsilon L}{R^2}$$

3.
$$\frac{\epsilon R}{eL^2}$$

4.
$$\frac{\epsilon L}{eR^2}$$

Question Type: MCQ

Question ID: 4050361707 Option 1 ID: 4050366186 Option 2 ID: 4050366185 Option 3 ID: 4050366184 Option 4 ID: 4050366183

Status: Not Answered

Q.2 A simple pendulum is being used to determine the value of gravitational acceleration g at a certain place. The length of the pendulum is 25.0 cm and a stop watch with 1 s resolution measures the time taken for 40 oscillations to be 50 s. The accuracy in g is:

Options 1. 2.40%

2. 5.40%

3. 4.40%

4. 3.40%

Question Type : MCQ

Question ID : 4050361694

Option 1 ID : 4050366132

Option 2 ID : 4050366134

Option 3 ID: 4050366133

Option 4 ID: 4050366131

Status : Answered

A particle of mass m is dropped from a height h above the ground. At the same time another particle of the same mass is thrown vertically upwards from the ground with a speed of $\sqrt{2gh}$. If they collide head-on completely inelastically, the time taken for the combined mass to reach the ground, in units of $\sqrt{\frac{h}{g}}$ is:

Options

$$\sqrt{\frac{1}{2}}$$

2.
$$\frac{1}{2}$$

3.
$$\sqrt{\frac{3}{2}}$$

4.
$$\sqrt{\frac{3}{4}}$$

Question Type : MCQ

Question ID : **4050361696** Option 1 ID : **4050366142**

Option 2 ID : 4050366139

Option 3 ID: 4050366140

Option 4 ID: 4050366141

Status: Answered

Q.4

As shown in fig. when a spherical cavity (centred at O) of radius 1 is cut out of a uniform sphere of radius R (centred at C), the centre of mass of remaining (shaded) part of sphere is at G, i.e on the surface of the cavity. R can be determined by the equation:

Options 1. $(R^2+R+1)(2-R)=1$

2.
$$(R^2+R-1)(2-R)=1$$

3.
$$(R^2-R-1)(2-R)=1$$

4. $(R^2-R+1)(2-R)=1$

Question Type : MCQ

Question ID: 4050361697

Option 1 ID: 4050366145

Option 2 ID : **4050366143** Option 3 ID : **4050366146**

Option 4 ID : 4050366144

Status: Not Answered

Q.5 A plane electromagnetic wave of frequency 25 GHz is propagating in vacuum along the z-direction. At a particular point in space and time, the is magnetic field given $\stackrel{\rightarrow}{\rm B} = 5 \times 10^{-8} \stackrel{\circ}{j} {\rm T}$. The corresponding electric field $\stackrel{\rightarrow}{E}$ is (speed of light $c = 3 \times 10^8 \text{ ms}^{-1}$

Options 1.
$$-1.66 \times 10^{-16} \, \hat{i} \, \text{V/m}$$

2.
$$1.66 \times 10^{-16} \, \hat{i} \, \text{V/m}$$

$$3. - 15 \hat{i} \text{ V/m}$$

4.
$$15\hat{i}$$
 V/m

Question Type : MCQ

Question ID: 4050361708

Option 1 ID: 4050366190

Option 2 ID: 4050366189

Option 3 ID: 4050366188

Option 4 ID: 4050366187

Status: Answered

Q.6 A particle of mass m and charge q is released from rest in a uniform electric field. If there is no other force on the particle, the dependence of its speed v on the distance x travelled by it is correctly given by (graphs are schematic and not drawn to scale)

Options

Question Type : MCQ

Question ID : **4050361706** Option 1 ID : **4050366179**

Option 2 ID : **4050366180**

Option 3 ID : **4050366181**

Option 4 ID: 4050366182

Status : Answered

Q.7 An object is gradually moving away from the focal point of a concave mirror along the axis of the mirror. The graphical representation of the magnitude of linear magnification (m) versus distance of the object from the mirror (x) is correctly given

(Graphs are drawn schematically and are not to scale)

Options

Question Type : MCQ

Question ID: 4050361709

Option 1 ID : 4050366194

Option 2 ID: 4050366192

Option 3 ID: 4050366191

Option 4 ID : 4050366193

Status: Answered

A uniform sphere of mass 500 g rolls without slipping on a plane horizontal surface with its centre moving at a speed of 5.00 cm/s. Its kinetic energy is:

Options 1. $6.25 \times 10^{-4} \,\mathrm{J}$

- 2. 1.13×10^{-3} J
- 3. 8.75×10^{-4} J
- 4. 8.75×10^{-3} J

Question Type: MCQ

Question ID: 4050361698

Option 1 ID: 4050366147

Option 2 ID: 4050366148

Option 3 ID: 4050366149

Option 4 ID: 4050366150

Status: Answered

Chosen Option: 1

Q.9 A particle moves such that its position

> vector $\overrightarrow{r}(t) = \cos\omega t \hat{i} + \sin\omega t \hat{j}$ where ω is a constant and t is time. Then which of the following statements is true for the velocity

> \overrightarrow{v} (t) and acceleration \overrightarrow{a} (t) of the particle:

- Options 1. \overrightarrow{v} and \overrightarrow{a} both are parallel to \overrightarrow{r}
 - \overrightarrow{v} is perpendicular to \overrightarrow{r} and \overrightarrow{a} is directed away from the origin

 \overrightarrow{v} and \overrightarrow{a} both are perpendicular to

 \overrightarrow{v} is perpendicular to \overrightarrow{r} and \overrightarrow{a} is directed towards the origin

Question Type: MCQ

Question ID: 4050361695

Option 1 ID: 4050366135

Option 2 ID: 4050366138

Option 3 ID: 4050366136

Option 4 ID: 4050366137 Status: Answered

Q.10 A transverse wave travels on a taut steel wire with a velocity of v when tension in it is 2.06×10^4 N. When the tension is changed to T, the velocity changed to v/2. The value of T is close to:

Options 1. $10.2 \times 10^2 \,\mathrm{N}$

2. $5.15 \times 10^3 \,\mathrm{N}$

3. $2.50 \times 10^4 \text{ N}$

4. $30.5 \times 10^4 \text{ N}$

Question Type : MCQ

Question ID: 4050361702

Option 1 ID: 4050366166

Option 2 ID: 4050366164

Option 3 ID: 4050366163

Option 4 ID: 4050366165

Status : Answered

Q.11 A very long wire ABDMNDC is shown in figure carrying current I. AB and BC parts are straight, long and at right angle. At D wire forms a circular turn DMND of radius R. AB, BC parts are tangential to circular turn at N and D. Magnetic field at the centre of circle is:

Options 1.
$$\frac{\mu_0 I}{2\pi R} \left(\pi + \frac{1}{\sqrt{2}}\right)$$

- 2. $\frac{\mu_0 I}{2R}$
- 3 $\frac{\mu_0 I}{2\pi R}$ $(\pi + 1)$
- 4. $\frac{\mu_0 I}{2\pi R} \left(\pi \frac{1}{\sqrt{2}}\right)$

Question Type : MCQ

Question ID: 4050361705

Option 1 ID: 4050366175

Option 2 ID: 4050366177

Option 3 ID: 4050366178

Option 4 ID: 4050366176

Status : Answered

Q.12 In a double-slit experiment, at a certain point on the screen the path difference between the two interfering waves is $\frac{1}{8}$ th of a wavelength. The ratio of the intensity of light at that point to that at the centre of a bright fringe is:

Options 1. 0.568

- 2. 0.853
- 3. 0.760
- 4. 0.672

Question Type: MCQ

Question ID: 4050361710

Option 1 ID: 4050366198

Option 2 ID : 4050366195

Option 3 ID: 4050366196

Option 4 ID: 4050366197

Status: Answered

Chosen Option: 3

Q.13 A galvanometer having a coil resistance $100~\Omega$ gives a full scale deflection when a current of 1 mA is passed through it. What is the value of the resistance which can convert this galvanometer into a voltmeter giving full scale deflection for a potential difference of $10~\mathrm{V}$?

Options 1. $8.9 \,\mathrm{k}\Omega$

- 2. $10 \text{ k}\Omega$
- 3. $9.9 \text{ k}\Omega$
- 4. $7.9 \text{ k}\Omega$

Question Type : MCQ

Question ID: 4050361713

Option 1 ID: 4050366207

Option 2 ID: 4050366210

Option 3 ID: 4050366208

Option 4 ID: 4050366209

Status: Answered

Q.14 A capacitor is made of two square plates each of side 'a' making a very small angle α between them, as shown in figure. The capacitance will be close to:

Options
1.
$$\frac{\epsilon_0 a^2}{d} \left(1 - \frac{\alpha a}{4d}\right)$$

$$2. \frac{\epsilon_0 a^2}{d} \left(1 + \frac{\alpha a}{d} \right)$$

з.
$$\frac{\epsilon_0 a^2}{d} \left(1 - \frac{\alpha a}{2d}\right)$$

$$4. \frac{\epsilon_0 a^2}{d} \left(1 - \frac{3\alpha a}{2d} \right)$$

Question Type : MCQ

Question ID: 4050361704

Option 1 ID: 4050366174 Option 2 ID: 4050366173

Option 3 ID: 4050366172

Option 4 ID: 4050366171

Status: Answered

An electron (mass m) with initial velocity $\overrightarrow{v} = v_0 \ \hat{i} + v_0 \ \hat{j}$ is in an electric field $\overrightarrow{E} = - E_0 \ \hat{k}$. If λ_0 is initial de-Broglie wavelength of electron, its de-Broglie wave length at time t is given by :

Options

$$\frac{\lambda_0}{\sqrt{1 + \frac{e^2 E_0^2 t^2}{m^2 v_0^2}}}$$

2.
$$\frac{\lambda_0}{\sqrt{2 + \frac{e^2 E^2 t^2}{m^2 v_0^2}}}$$

3.
$$\frac{\lambda_0}{\sqrt{1 + \frac{e^2 E^2 t^2}{2m^2 v_0^2}}}$$

4.
$$\frac{\lambda_0 \sqrt{2}}{\sqrt{1 + \frac{e^2 E^2 t^2}{m^2 v_0^2}}}$$

Question Type : MCQ

Question ID: 4050361711

Option 1 ID: 4050366199

Option 2 ID: 4050366201

Option 3 ID: 4050366200

Option 4 ID : 4050366202

Status: Not Answered

Q.16

A Carnot engine having an efficiency of $\frac{1}{10}$

is being used as a refrigerator. If the work done on the refrigerator is 10 J, the amount of heat absorbed from the reservoir at lower temperature is:

Options _{1.} 99 J

- 2. 100 J
- 3. 90 J
- 4. 1 J

Question Type: MCQ

Question ID: 4050361700 Option 1 ID: 4050366156 Option 2 ID: 4050366155 Option 3 ID: 4050366157

Option 4 ID: 4050366158 Status: Answered

Chosen Option: 4

Q.17 In the given circuit, value of Y is:

Options 1. toggles between 0 and 1

- 2. 1
- 3. 0
- 4. will not execute

Question Type : \mathbf{MCQ}

Question ID: 4050361712

Option 1 ID: 4050366205

Option 2 ID : 4050366204

Option 3 ID : 4050366203

Option 4 ID : 4050366206

Status : Not Answered

Q.18

Two liquids of densities ρ_1 and $\rho_2(\rho_2=2\rho_1)$ are filled up behind a square wall of side 10 m as shown in figure. Each liquid has a height of 5 m. The ratio of the forces due to these liquids exerted on upper part MN to that at the lower part NO is (Assume that the liquids are not mixing):

Options 1. 1/2

2. 2/3

3. 1/4

4. 1/3

Question Type : MCQ

Question ID: 4050361699

Option 1 ID: 4050366152

Option 2 ID: 4050366151

Option 3 ID : 4050366154

Option 4 ID : 4050366153

Status : Answered

Chosen Option : ${\bf 1}$

Q.19 Consider a mixture of n moles of helium gas and 2n moles of oxygen gas (molecules taken to be rigid) as an ideal gas. Its C_p/C_V value will be:

Options _{1.40/27}

- 2. 23/15
- 3. 19/13
- 4. 67/45

Question Type : MCQ

Question ID: 4050361701

Option 1 ID: 4050366162

Option 2 ID: 4050366160

Option 3 ID : 4050366161

Option 4 ID : 4050366159 Status : Not Answered

Chosen Option : --

Q.20 Consider two charged metallic spheres S_1 and S_2 of radii R_1 and R_2 , respectively. The electric fields E_1 (on S_1) and E_2 (on S_2) on their surfaces are such that $E_1/E_2=R_1/R_2$. Then the ratio V_1 (on S_1)/ V_2 (on S_2) of the electrostatic potentials on each sphere is:

Options

1.
$$\left(\frac{R_1}{R_2}\right)^3$$

- 2. (R_2/R_1)
- 3. R_1/R_2
- 4. $(R_1/R_2)^2$

Question Type: MCQ

Question ID: 4050361703

Option 1 ID: 4050366169

Option 2 ID : 4050366170

Option 3 ID: 4050366167

Option 4 ID: 4050366168

Status: Not Answered

Q.21	The series combination of two batteries,
	both of the same emf 10 V, but different
	internal resistance of 20 Ω and 5 Ω , is
	connected to the parallel combination of
	two resistors 30 Ω and R Ω . The voltage
	difference across the battery of internal
	resistance 20 Ω is zero, the value of
	R (in Ω) is

Given **0.67** Answer:

Question Type : SA

Question ID : 4050361717 Status : Answered

Q.22 Three containers C₁, C₂ and C₃ have water at different temperatures. The table below shows the final temperature T when different amounts of water (given in liters) are taken from each container and mixed (assume no loss of heat during the process)

C_1	C_2	C_3	T
11	21		60°C
-	11	21	30°C
21		11	60°C
11	11	11	θ

The value of θ (in °C to the nearest integer)

is .

Given 4 Answer:

Question Type : SA

Question ID : 4050361716 Status : Answered

Q.23	A ball is dropped from the top of a 100 m
	high tower on a planet. In the last $\frac{1}{2}$ s
	before hitting the ground, it covers a
	distance of 19 m. Acceleration due to
	gravity (in ms ⁻²) near the surface on that
	planet is

Given 9.586 Answer:

Question Type : **SA**Question ID : **4050361714**Status : **Answered**

Q.24 An asteroid is moving directly towards the centre of the earth. When at a distance of 10 R (R is the radius of the earth) from the earths centre, it has a speed of 12 km/s. Neglecting the effect of earths atmosphere, what will be the speed of the asteroid when it hits the surface of the earth (escape velocity from the earth is 11.2 km/s)? Give your answer to the nearest integer in kilometer/s _____.

Given 1344 Answer:

Question Type : **SA**Question ID : **4050361715**Status : **Answered**

Q.25 The first member of the Balmer series of hydrogen atom has a wavelength of 6561 Å. The wavelength of the second member of the Balmer series (in nm) is

Given **15122** Answer:

Question Type : SA

Question ID : 4050361718

Status : Answered

Section : Chemistry

Q.1 Arrange the following bonds according to their average bond energies in descending order:

Options 1. C - F > C - Cl > C - Br > C - I

$$4 \cdot C - CI > C - Br > C - I > C - F$$

Question Type: MCQ

Question ID : 4050361723

Option 1 ID: 4050366233

Option 2 ID: 4050366235

Option 3 ID: 4050366234

Option 4 ID : 4050366232

Status: Not Answered

Chosen Option : --

Q.2 Two monomers in maltose are:

Options 1 α -D-glucose and α -D-glucose

α-D-glucose and α-D-galactose

3. α -D-glucose and β -D-glucose

4. α-D-glucose and α-D-Fructose

Question Type : \boldsymbol{MCQ}

Question ID : 4050361732

Option 1 ID : 4050366269

Option 2 ID: 4050366270

Option 3 ID: 4050366271

Option 4 ID : 4050366268
Status : Not Answered

- Q.3 The correct order of the calculated spin-only magnetic moments of complexes (A) to (D) is:
 - (A) Ni(CO)₄
 - (B) [Ni(H₂O)₆]Cl₂
 - (C) Na₂[Ni(CN)₄]
 - (D) PdCl₂(PPh₃)₂

Options 1 (A) \approx (C) \leq (B) \approx (D)

- 2. (C) ≈ (D) < (B) < (A)
- 3 (C) < (D) < (B) < (A)
- 4 (A) \approx (C) \approx (D) \leq (B)

Question Type : MCQ

Question ID: 4050361730

Option 1 ID: 4050366262

Option 2 ID: 4050366261

Option 3 ID: 4050366260

Option 4 ID: 4050366263

Status: Not Answered

- Q.4 Among the reactions (a) - (d), the reaction(s) that does/do not occur in the blast furnace during the extraction of iron is/are:
 - $CaO + SiO_2 \rightarrow CaSiO_3$ (a)
 - (b) $3\text{Fe}_2\text{O}_3 + \text{CO} \rightarrow 2\text{Fe}_3\text{O}_4 + \text{CO}_2$
 - (c) $\text{FeO} + \text{SiO}_2 \rightarrow \text{FeSiO}_3$
 - (d) FeO \rightarrow Fe + $\frac{1}{2}$ O₂

Options 1. (c) and (d)

- 2. (a)
- 3. (a) and (d)
- 4. (d)

Question Type: MCQ

Question ID: 4050361726

Option 1 ID: 4050366246

Option 2 ID: 4050366244

Option 3 ID: 4050366247

Option 4 ID: 4050366245

Status: Answered Chosen Option : 2

Q.5 For the following Assertion and Reason, the correct option is:

Assertion: The pH of water increases with increase in temperature.

Reason: The dissociation of water into

H⁺ and OH⁻ is an exothermic

reaction.

Options Assertion is not true, but reason is true.

Both assertion and reason are true,

- and the reason is the correct explanation for the assertion.
- 3. Both assertion and reason are false.

Both assertion and reason are true,

 but the reason is not the correct explanation for the assertion.

Question Type : MCQ

Question ID : 4050361721

Option 1 ID : 4050366226

Option 2 ID : **4050366224** Option 3 ID : **4050366227**

Option 4 ID : **4050366225**

Status : Answered

Q.6 An unsaturated hydrocarbon X absorbs two hydrogen molecules on catalytic hydrogenation, and also gives following reaction:

$$X \xrightarrow{O_3} A \xrightarrow{[Ag(NH_3)_2]^+}$$

B(3-oxo-hexanedicarboxylic acid)

X will be:

Options

Question Type : MCQ

Question ID : **4050361735** Option 1 ID : **4050366280** Option 2 ID : **4050366282**

Option 3 ID : **4050366281** Option 4 ID : **4050366283**

Status : Answered

Q.7 Which of the following compounds is likely to show both Frenkel and Schottky defects in its crystalline form?

Options 1. AgBr

- 2. CsCl
- 3. KBr
- 4. ZnS

Question Type: MCQ

Question ID: 4050361724

Option 1 ID: 4050366239

Option 2 ID: 4050366237

Option 3 ID: 4050366238

Option 4 ID: 4050366236 Status: Answered

Chosen Option : 1

Q.8 The radius of the second Bohr orbit, in terms of the Bohr radius, a_0 , in Li^{2+} is:

Options

$$\frac{2a_0}{3}$$

- 2. $\frac{4a_0}{3}$
- 3. $\frac{4a_0}{9}$
- $\frac{2a_0}{9}$

Question Type : MCQ

Question ID: 4050361722

Option 1 ID: 4050366228

Option 2 ID : **4050366229**

Option 3 ID: 4050366231

Option 4 ID: 4050366230

Status: Not Answered

Q.9 For the following Assertion and Reason, the correct option is:

> Assertion: For hydrogenation reactions, the catalytic activity increases from Group 5 to Group 11 metals with maximum activity shown by Group 7-9 elements.

> Reason: The reactants are most strongly adsorbed on group 7 - 9 elements.

Options
The assertion is true, but the reason is false.

Both assertion and reason are true but 2. the reason is not the correct explanation for the assertion.

Both assertion and reason are true and the reason is the correct explanation for the assertion.

4. Both assertion and reason are false.

Question Type : MCQ

Question ID : **4050361719** Option 1 ID : **4050366218** Option 2 ID : **4050366217**

Option 3 ID : **4050366216** Option 4 ID : **4050366219**

Status: Not Answered

Q.10 Preparation of Bakelite proceeds via reactions:

Options

- Electrophilic addition and dehydration
- 2. Condensation and elimination
- Nucleophilic addition and dehydration
- Electrophilic substitution and dehydration

Question Type : MCQ

Question ID : 4050361736 Option 1 ID : 4050366285 Option 2 ID : 4050366287

Option 3 ID : **4050366286** Option 4 ID : **4050366284** Status : **Answered**

Chosen Option: 2

Q.11 White phosphorus on reaction with concentrated NaOH solution in an inert atmosphere of CO₂ gives phosphine and compound (X). (X) on acidification with HCl gives compound (Y). The basicity of compound (Y) is:

Options 1. 4

- 2. 3
- 3. 2
- 4. 1

Question Type : \boldsymbol{MCQ}

Question ID : **4050361729** Option 1 ID : **4050366259** Option 2 ID : **4050366258**

Option 3 ID : **4050366257** Option 4 ID : **4050366256**

Status: Not Answered

Q.12 Among (a) – (d), the complexes that can display geometrical isomerism are :

- (a) [Pt(NH₃)₃Cl] +
- (b) [Pt(NH₃)Cl₅]-
- (c) $[Pt(NH_3)_2Cl(NO_2)]$
- (d) $[Pt(NH_3)_4ClBr]^{2+}$

Options 1. (d) and (a)

- 2. (c) and (d)
- 3. (a) and (b)
- 4. (b) and (c)

Question Type: MCQ

Question ID: 4050361731

Option 1 ID: 4050366267

Option 2 ID: 4050366266

Option 3 ID : **4050366264**

Option 4 ID : **4050366265**

Status: Not Answered

Chosen Option : --

Q.13 A metal (A) on heating in nitrogen gas gives compound B. B on treatment with H₂O gives a colourless gas which when passed through CuSO₄ solution gives a dark blue-violet coloured solution. A and B respectively, are:

Options 1. Na and Na₃N

- 2. Mg and Mg₃N₂
- 3. Mg and Mg(NO₃)₂
- 4 Na and NaNO₃

Question Type : $\boldsymbol{\mathsf{MCQ}}$

Question ID : 4050361728

Option 1 ID: 4050366252

Option 2 ID: 4050366253

Option 3 ID : 4050366254

Option 4 ID: 4050366255

Status: Answered

Q.14 The major product [B] in the following sequence of reactions is:

$$\begin{array}{c} \text{CH}_3-\text{C}=\text{CH}-\text{CH}_2\text{CH}_3 & \text{(i)} \ \text{B}_2\text{H}_6 \\ \text{CH}(\text{CH}_3)_2 & \hline \text{(ii)} \ \text{H}_2\text{O}_2, \text{OH} \end{array} \hspace{-0.5cm} \text{[A]}$$

$$\frac{\text{dil. H}_2\text{SO}_4}{\Delta} \text{[B]}$$

Options
$$CH_3 - CH - CH = CH - CH_3$$

 $CH(CH_3)_2$

2.
$$CH_3-C=CH-CH_2CH_3$$

CH(CH₃)₂

$$CH_3-C-CH_2CH_2CH_3$$
B. C
 H_3C
 CH_3

Question Type : $\boldsymbol{\mathsf{MCQ}}$

Question ID: 4050361738 Option 1 ID: 4050366292 Option 2 ID: 4050366294 Option 3 ID: 4050366295 Option 4 ID: 4050366293

Status : Not Answered

Q.15 Among the compounds A and B with molecular formula C₉H₁₈O₃, A is having higher boiling point the B. The possible structures of A and B are:

Options

1.
$$B = HO$$
OH

$$A = H_3CO$$
 OCH₃

$$B = HO$$
OH
OH

$$A = H_3CO OCH_3$$

$$OCH_3$$

$$B = H_3CO OCH_3$$

$$OCH_3$$

Question Type: MCQ
Question ID: 4050361737
Option 1 ID: 4050366288
Option 2 ID: 4050366290

Option 3 ID : **4050366291**Option 4 ID : **4050366289**Status : **Not Answered**

Chosen Option: --

Q.16 Consider the following plots of rate constant versus $\frac{1}{T}$ for four different reactions. Which of the following orders is correct for the activation energies of these reactions?

Options 1. $E_b > E_a > E_d > E_c$

- 2. $E_a > E_c > E_d > E_b$
- 3. $E_b > E_d > E_c > E_a$
- 4. $E_c > E_a > E_d > E_b$

Question Type: MCQ

Question ID: 4050361720 Option 1 ID: 4050366223 Option 2 ID: 4050366221

Option 3 ID : **4050366220** Option 4 ID : **4050366222**

Status : Not Answered

Status . Not Answere

Q.17 The major product in the following reaction is:

Options

OH OH CH_3

Question Type : MCQ

Question ID: 4050361734

Option 1 ID: 4050366277

Option 2 ID : 4050366276

Option 3 ID: 4050366279 Option 4 ID: 4050366278

Status : Answered

Q.18 The increasing order of the atomic radii of the following elements is:

O

- (a) C
- (b)
- (d) Cl (e)
- Br
- Options 1. (a) < (b) < (c) < (d) < (e)
 - 2 (c) < (b) < (a) < (d) < (e)
 - 3. (d) < (c) < (b) < (a) < (e)
 - 4. (b) < (c) < (d) < (a) < (e)

Question Type: MCQ

Question ID: 4050361725

Option 1 ID: 4050366240

Option 2 ID: 4050366242

Option 3 ID: 4050366243

Option 4 ID: 4050366241

Status: Answered

Chosen Option: 1

- Q.19 Hydrogen has three isotopes (A), (B) and (C). If the number of neutron(s) in (A), (B) and (C) respectively, are (x), (y) and (z), the sum of (x), (y) and (z) is:
- Options 1. 4
 - 2. 3
 - 3. 2
 - 4. 1

Question Type : MCQ

Question ID: 4050361727

Option 1 ID: 4050366251

Option 2 ID: 4050366250

Option 3 ID: 4050366249

Option 4 ID: 4050366248

Status : Answered

Q.20 Kjeldahl's method cannot be used to estimate nitrogen for which of the following compounds?

Options 1. $C_6H_5 NO_2$

4. C₆H₅ NH₂

Question Type : MCQ

Question ID: 4050361733 Option 1 ID: 4050366274 Option 2 ID: 4050366272 Option 3 ID: 4050366273 Option 4 ID: 4050366275

Status: Not Answered

Chosen Option: --

Q.21 For an electrochemical cell

$$Sn(s)|Sn^{2+}(aq, 1M)||Pb^{2+}(aq, 1M)|Pb(s)$$

the ratio $\frac{[Sn^{2+}]}{[Pb^{2+}]}$ when this cell attains

equilibrium is _____.

Given:
$$E_{\text{Sn}^{2+}|\text{Sn}}^0 = -0.14\text{V}$$
,

$$E_{Pb^{2+}|Pb}^{0} = -0.13V, \ \frac{2.303RT}{F} = 0.06$$

Given 1.07 Answer:

Question Type : SA

Question ID : 4050361741 Status : Answered

Q.22	At constant volume, 4 mol of an ideal gas
	when heated from 300 K to 500 K changes
	its internal energy by 5000 J. The molar heat
	capacity at constant volume is .

Given **0.1** Answer:

Question Type : SA

Question ID : 4050361740 Status : Answered

Q.23 In the following sequence of reactions the maximum number of atoms present in molecule 'C' in one plane is ______.

$$A \xrightarrow{\text{Red hot}} B \xrightarrow{\text{CH}_3\text{Cl (1. eq.)}} C$$
Anhydrous AlCl₃

(A is a lowest molecular weight alkyne)

Given 6 Answer:

Question Type : SA

Question ID : 4050361743 Status : Answered

NaClO₃ is used, even in spacecrafts, to produce O₂. The daily consumption of pure O₂ by a person is 492 L at 1 atm, 300 K. How much amount of NaClO₃, in grams, is required to produce O₂ for the daily consumption of a person at 1 atm, 300 K?

NaClO₃(s) + Fe(s)
$$\rightarrow$$
 O₂(g) + NaCl(s) + FeO(s)
R = 0.082 L atm mol⁻¹ K⁻¹

Given **492.365** Answer:

Question Type : SA

Question ID : 4050361739 Status : Answered Q.25 Complexes (ML₅) of metals Ni and Fe have ideal square pyramidal and trigonal bipyramidal geometries, respectively. The sum of the 90°, 120° and 180° L-M-L angles in the two complexes is _____.

Given 110 Answer:

Question Type : **SA**Question ID : **4050361742**Status : **Answered**

Section: Mathematics

Q.1 Let A and B be two events such that the probability that exactly one of them occurs

is $\frac{2}{5}$ and the probability that A or B occurs

is $\frac{1}{2}$, then the probability of both of them occur together is:

Options 1. 0.10

2. 0.20

3. 0.01

4. 0.02

Question Type : MCQ

Question ID: 4050361762 Option 1 ID: 4050366375 Option 2 ID: 4050366376 Option 3 ID: 4050366373 Option 4 ID: 4050366374

Status : Answered

Let S be the set of all real roots of the equation, $3^x(3^x-1)+2=|3^x-1|+|3^x-2|$. Then S:

Options 1. is a singleton.

- 2. is an empty set.
- 3. contains at least four elements.
- 4 contains exactly two elements.

Question Type: MCQ

Question ID: 4050361746
Option 1 ID: 4050366310
Option 2 ID: 4050366309
Option 3 ID: 4050366312
Option 4 ID: 4050366311
Status: Answered

Chosen Option: 1

Q.3 The mean and variance of 20 observations are found to be 10 and 4, respectively. On rechecking, it was found that an observation 9 was incorrect and the correct observation was 11. Then the correct variance is:

Options _{1.} 4.01

2. 3.99

3. 3.98

4. 4.02

Question Type : MCQ

Question ID: 4050361761 Option 1 ID: 4050366371 Option 2 ID: 4050366370 Option 3 ID: 4050366369 Option 4 ID: 4050366372

Status: Not Answered

Let
$$\overrightarrow{a} = \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$$

 $\overrightarrow{b} = \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$ be two vectors. If \overrightarrow{c} is a

vector such that $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{a}$ and

 $\overrightarrow{c} \cdot \overrightarrow{a} = 0$, then $\overrightarrow{c} \cdot \overrightarrow{b}$ is equal to:

- Options 1. $\frac{1}{2}$

 - 4. -1

Question Type: MCQ

Question ID: 4050361760

Option 1 ID: 4050366365

Option 2 ID: 4050366368

Option 3 ID: 4050366366

Option 4 ID: 4050366367

Status: Answered

Let
$$f: (1, 3) \rightarrow \mathbb{R}$$
 be a function defined by

$$f(x) = \frac{x[x]}{1+x^2}$$
, where [x] denotes the

greatest integer $\leq x$. Then the range of f is:

Options

$$1 \left(\frac{2}{5}, \frac{3}{5}\right] \cup \left(\frac{3}{4}, \frac{4}{5}\right)$$

$$2. \left(\frac{2}{5}, \frac{4}{5}\right]$$

$$3.\left(\frac{3}{5},\frac{4}{5}\right)$$

$$4\left(\frac{2}{5},\frac{1}{2}\right)\cup\left(\frac{3}{5},\frac{4}{5}\right]$$

Question Type : MCQ

Question ID: 4050361744

Option 1 ID: 4050366304

Option 2 ID: 4050366302

Option 3 ID: 4050366301

Option 4 ID : 4050366303

Status : **Answered** Chosen Option : **4**

Q.6 If α and β be the coefficients of x^4 and x^2 respectively in the expansion of

$$(x + \sqrt{x^2 - 1})^6 + (x - \sqrt{x^2 - 1})^6$$
, then:

Options 1. $\alpha + \beta = -30$

$$2. \alpha - \beta = -132$$

$$3. \alpha + \beta = 60$$

4.
$$\alpha - \beta = 60$$

Question Type : MCQ

Question ID: 4050361749

Option 1 ID: 4050366323

Option 2 ID : 4050366322

Option 3 ID: 4050366321

Option 4 ID: 4050366324

Status: Not Answered

Q.7 If a hyperbola passes through the point P(10, 16) and it has vertices at $(\pm 6, 0)$, then the equation of the normal to it at P is:

Options 1. 3x + 4y = 94

2.
$$x + 2y = 42$$

3.
$$2x + 5y = 100$$

4.
$$x + 3y = 58$$

Question Type : MCQ

Question ID : 4050361758 Option 1 ID : 4050366357 Option 2 ID : 4050366359 Option 3 ID : 4050366360

Option 4 ID: 4050366358 Status: Answered

Chosen Option: 2

$$\lim_{x\to 0} \frac{\int_0^x t \sin(10t) dt}{x}$$
 is equal to:

Options 1. 0

2.
$$\frac{1}{10}$$

$$3. - \frac{1}{10}$$

4.
$$-\frac{1}{5}$$

Question Type : MCQ

Question ID: 4050361751 Option 1 ID: 4050366332 Option 2 ID: 4050366330 Option 3 ID: 4050366331 Option 4 ID: 4050366329

Status : Answered

Q.9 If a line, y = mx + c is a tangent to the circle, $(x-3)^2 + y^2 = 1$ and it is perpendicular to a line L₁, where L₁ is the tangent to the circle,

$$x^2 + y^2 = 1$$
 at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$; then:

Options 1. $c^2 + 7c + 6 = 0$

2.
$$c^2 - 6c + 7 = 0$$

3.
$$c^2 - 7c + 6 = 0$$

4.
$$c^2 + 6c + 7 = 0$$

Question Type : MCQ

Question ID: 4050361757

Option 1 ID: 4050366354

Option 2 ID: 4050366356

Option 3 ID: 4050366353

Option 4 ID: 4050366355

Status: Answered

Chosen Option: 1

Q.10

Let
$$\alpha = \frac{-1 + i\sqrt{3}}{2}$$
. If

$$a = (1 + \alpha) \sum_{k=0}^{100} \alpha^{2k}$$
 and $b = \sum_{k=0}^{100} \alpha^{3k}$, then

a and b are the roots of the quadratic equation:

Options 1. $x^2 + 101x + 100 = 0$

$$2 \quad x^2 + 102x + 101 = 0$$

3.
$$x^2 - 102x + 101 = 0$$

4
$$x^2 - 101x + 100 = 0$$

Question Type : MCQ

Question ID: 4050361745

Option 1 ID: 4050366305

Option 2 ID: 4050366306

Option 3 ID: 4050366308

Option 4 ID: 4050366307

Status: Not Answered

Q.11 The mirror image of the point (1, 2, 3) in a

plane is
$$\left(-\frac{7}{3}, -\frac{4}{3}, -\frac{1}{3}\right)$$
. Which of the

following points lies on this plane?

Options 1. (1, -1, 1)

- 2. (-1, -1, 1)
- 3. (1, 1, 1)
- 4. (-1, -1, -1)

Question Type: MCQ

Question ID : 4050361759

Option 1 ID: 4050366363

Option 2 ID: 4050366364

Option 3 ID: 4050366362

Option 4 ID: 4050366361

Status: Answered

Chosen Option: 4

Q.12 The length of the perpendicular from the origin, on the normal to the curve, $x^2 + 2xy - 3y^2 = 0$ at the point (2, 2) is:

Options 1. 2

- 2. 2\sqrt{2}
- 3. $4\sqrt{2}$
- 4. $\sqrt{2}$

Question Type : MCQ

Question ID: 4050361753

Option 1 ID: 4050366338

Option 2 ID: 4050366339

Option 3 ID: 4050366340

Option 4 ID: 4050366337

Status: Answered

Which of the following statements is a tautology?

Options $_1$ ~ $(p \land ~q) \rightarrow p \lor q$

2
$$\sim (p \vee \sim q) \rightarrow p \wedge q$$

3.
$$p \vee (\sim q) \rightarrow p \wedge q$$

$$4 \ ^{\sim}(p \ \lor \ ^{\sim}q) \ \to \ p \lor q$$

Question Type: MCQ

Question ID: 4050361763

Option 1 ID: 4050366379

Option 2 ID: 4050366378

Option 3 ID: 4050366377 Option 4 ID: 4050366380

Status: Not Answered

Chosen Option: --

Q.14 If
$$I = \int_{1}^{2} \frac{dx}{\sqrt{2x^3 - 9x^2 + 12x + 4}}$$
, then:

Options 1.
$$\frac{1}{6} < I^2 < \frac{1}{2}$$

2.
$$\frac{1}{8} < I^2 < \frac{1}{4}$$

3.
$$\frac{1}{9} < I^2 < \frac{1}{8}$$

$$4 \ \frac{1}{16} < I^2 < \frac{1}{9}$$

Question Type : MCQ

Question ID: 4050361754

Option 1 ID: 4050366344

Option 2 ID: 4050366343

Option 3 ID: 4050366341

Option 4 ID: 4050366342

Status: Not Answered

If
$$A = \begin{pmatrix} 2 & 2 \\ 9 & 4 \end{pmatrix}$$
 and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then

 $10A^{-1}$ is equal to:

Options 1. 6I – A

- 2. A 6I
- 3. 4I A
- 4. A 4I

Question Type: MCQ

Question ID: 4050361747

Option 1 ID: 4050366313

Option 2 ID: 4050366316

Option 3 ID : 4050366314

Option 4 ID: 4050366315

Status : Answered

Chosen Option : 1

Q.16 The area (in sq. units) of the region $\{(x, y) \in \mathbb{R}^2 : x^2 \le y \le 3 - 2x\}$, is:

Options

- 1. $\frac{31}{3}$
- 2. $\frac{32}{3}$
- 3. $\frac{29}{3}$
- 4. $\frac{34}{3}$

Question Type : MCQ

Question ID: 4050361755

Option 1 ID: 4050366347

Option 2 ID: 4050366345

Option 3 ID : 4050366346

Option 4 ID: 4050366348

Status: Not Answered

Q.17 Let S be the set of all functions $f: [0, 1] \rightarrow \mathbb{R}$, which are continuous on [0, 1] and differentiable on (0, 1). Then for every f in S, there exists a $c \in (0, 1)$, depending on f, such that:

Options 1.
$$\frac{f(1) - f(c)}{1 - c} = f'(c)$$

2.
$$|f(c)-f(1)| < |f'(c)|$$

3.
$$|f(c)+f(1)| < (1+c)|f'(c)|$$

4.
$$|f(c)-f(1)| < (1-c)|f'(c)|$$

Question Type: MCQ

Question ID: 4050361752

Option 1 ID: 4050366336

Option 2 ID: 4050366333

Option 3 ID: 4050366335

Option 4 ID: 4050366334

Status: Answered

Chosen Option: 1

Q.18 The differential equation of the family of curves, $x^2 = 4b(y + b)$, $b \in \mathbb{R}$, is:

Options 1. xy'' = y'

2.
$$x(y')^2 = x + 2yy'$$

3.
$$x(y')^2 = x - 2yy'$$

4.
$$x(y')^2 = 2yy' - x$$

Question Type : MCQ

Question ID: 4050361756

Option 1 ID: 4050366349

Option 2 ID: 4050366351

Option 3 ID: 4050366350

Option 4 ID: 4050366352 Status: Not Answered

Q.19 The system of linear equations

$$\lambda x + 2y + 2z = 5$$

$$2\lambda x + 3y + 5z = 8$$

$$4x + \lambda y + 6z = 10$$
 has:

Options 1 no solution when $\lambda = 2$

- 2. infinitely many solutions when $\lambda = 2$
- 3. no solution when $\lambda = 8$
- 4. a unique solution when $\lambda = -8$

Question Type: MCQ

Question ID: 4050361748

Option 1 ID: 4050366320

Option 2 ID: 4050366319

Option 3 ID: 4050366318

Option 4 ID: 4050366317

Status : Answered

Chosen Option: 4

If the 10th term of an A.P. is $\frac{1}{20}$ and its

 20^{th} term is $\frac{1}{10}$, then the sum of its first

200 terms is:

Options

- $1.50\frac{1}{4}$
- 2. 100
- 3. 50
- 4. $100\frac{1}{2}$

Question Type: MCQ

Question ID : 4050361750

Option 1 ID : 4050366326

Option 2 ID: 4050366327

Option 3 ID : 4050366325

Option 4 ID : 4050366328

Status : **Answered**

Q.21 Let a line y = mx (m > 0) intersect the parabola, $y^2 = x$ at a point P, other than the origin. Let the tangent to it at P meet the x-axis at the point Q. If area (Δ OPQ) = 4 sq. units, then m is equal to _____.

Given 4 Answer:

Question Type : SA

Question ID : 4050361767

Status : Answered

Q.22 Let f(x) be a polynomial of degree 3 such that f(-1) = 10, f(1) = -6, f(x) has a critical point at x = -1 and f'(x) has a critical point at x = 1. Then f(x) has a local minima at x =_____.

Given 6 Answer :

Question Type : SA

Question ID : 4050361766

Status : Answered

If $\frac{\sqrt{2}\sin\alpha}{\sqrt{1+\cos2\alpha}} = \frac{1}{7}$ and $\sqrt{\frac{1-\cos2\beta}{2}} = \frac{1}{\sqrt{10}}$, $\alpha, \beta \in \left(0, \frac{\pi}{2}\right)$, then $\tan(\alpha+2\beta)$ is equal to

Given 1 Answer:

Question Type : **SA**Question ID : **4050361768**Status : **Answered**

Q.24 The number of 4 letter words (with or without meaning) that can be formed from the eleven letters of the word 'EXAMINATION' is _____.

Given 8 Answer :

Question Type : **SA**Question ID : **4050361764**Status : **Answered**

Q.25	The sum, $\sum_{n=1}^{7} \frac{n(n+1)(2n+1)}{4}$ is equal to	
	·	
Given Answer		

Question Type : **SA**Question ID : **4050361765**Status : **Answered**