IITJEE 2013

PART A -CHEMISTRY

1.	An unknown alcohol is treated with the "Lucas reagent" to determine whether the alcohol is primary
	secondary or tertiary. Which alcohol reacts fastest and by what mechanism:

(1) tertiary alcohol by $S_N 1$

(2) secondary alcohol by S_N2

(3) tertiary alcohol by S_N2

(4) secondary alcohol by $S_N 1$

Sol. (1

Reaction proceeds through carbocation formation as 3^0 carbocation is highly stable, hence reaction proceeds through $S_N 1$ with 3^0 alcohol.

2. The first ionization potential of Na is 5.1 eV. The value of electron gain enthalpy of Na⁺ will be:

$$(1) - 5.1 \text{ eV}$$

(3) -10.2 eV

$$(3) + 2.55 \text{ eV}$$

(4) - 2.55 eV

 $Na \xrightarrow{\Delta H = +5.1 eV} Na^+ + e^-$, here the backward reaction releases same amount of energy and known as

Electron gain enthalpy.

3. Stability of the species Li_2 , Li_2^- and Li_2^+ increases in the order of:

(1)
$$\text{Li}_2^- < \text{Li}_2^+ < \text{Li}_2$$

(3)
$$\text{Li}_2 < \text{Li}_2^- < \text{Li}_2^+$$

(3)
$$\text{Li}_{2}^{-} < \text{Li}_{2} < \text{Li}_{2}^{+}$$

(4)
$$\text{Li}_2 < \text{Li}_2^+ < \text{Li}_2^-$$

$$\text{Li}_2(6) = \sigma \text{ls}^2 \, \overset{*}{\sigma} \text{ls}^2 \, \sigma 2\text{s}^2$$

B.O. =
$$\frac{4-2}{2}$$
 = 1

$$\text{Li}_{2}^{+}(5) = \sigma 1 s^{2} \sigma^{2} 1 s^{2} \sigma^{2} 2 s^{1}$$

B. O.
$$=\frac{3-2}{2}=0.5$$

B.O.
$$=\frac{4-3}{2}=0.5$$

 Li_2^+ is more stable than Li_2^- because Li_2^- has more numbers of antibonding electrons.

(1) 1.00 M

(2) 1.75 M

(3) 0.975 M

(4) 0.875 M

$$M_1V_1 + M_2V_2 = MV$$

$$M = \frac{M_1 V_1 + M_2 V_2}{V} = \frac{0.5 \times 750 + 2 \times 250}{1000}$$

$$M = 0.875$$

- (1) O₃ molecule is bent
- (3) Ozone is diamagnetic gas

- (2) Ozone is violet-black in solid state
- (4) ONCl and ONO are not isoelectronic

Sol. (All the options are correct statements)

(1) Correct, as O is bent.

- (2) Correct, as ozone is violet-black solid.
- (3) Correct, as ozone is diamagnetic.
- (4) Correct, as ONCl = 32 electrons and ONO = 24 electron hence are not isoelectronic.

All options are correct statements.

- Four successive members of the first row transition elements are listed below with atomic numbers. Which 6. one of them is expected to have the highest $E_{M^{3+}/M^{2+}}^{0}$ value?
 - (1) Mn(Z = 25)

(2) Fe(Z = 26)

(3) Co(Z = 27)

(4) Cr(Z = 24)

Sol.

$$E_{Mn^{+3}/Mn^{+2}}^{0} = 1.57 \text{ V}$$

$$E^0_{Fe^{+3}/Fe^{+2}} = 0.77 \text{ V}$$

$$E_{\text{Co}^{+3}/\text{Co}^{+2}}^{0} = 1.97 \text{ V}$$

$$E^0_{Cr^{+3}/Cr^{+2}} = -0.41 \text{ V}$$

- 7. A solution of (-) -1 - chloro -1 - phenylethane is toluene racemises slowly in the presence of a small amount of SbCl₅, due to the formation of:
 - (1) carbene

(2) carbocation

(3) free radical

(4) carbanion

Sol. **(2)**

$$\begin{array}{c|c} & CH-CH_3 & \xrightarrow{SbCl_5} & \left[Ph-CH-CH_3\right]^+ \left[SbCl_6\right]^- \\ & Cl & \end{array}$$

- The coagulating power of electrolytes having ions Na⁺, Al³⁺ and Ba²⁺ for arsenic sulphide sol increases in 8. the order:
 - (1) $Na^+ < Ba^{2+} < Al^{3+}$

(2) $Ba^{2+} < Na^{+} < Al^{3+}$ (4) $Al^{3+} < Ba^{2+} < Na^{+}$

(3) $Al^{3+} < Na^+ < Ba^{2+}$

Sol. **(1)**

> As₂S₃ is an anionic sol (negative sol) hence coagulation will depend upon coagulating power of cation, which is directly proportional to the valency of cation (Hardy-Schulze rule).

- 9. How many litres of water must be added to 1 litre of an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2?
 - (1) 0.9 L

(2) 2.0 L

(3) 9.0 L

(4) 0.1 L

Sol.

Initial pH = 1, i.e. $[H^+]$ = 0.1 mole/litre

New pH = 2, i.e. $[H^+] = 0.01$ mole/litre

In case of dilution: $M_1V_1 = M_2V_2$

 $0.1 \times 1 = 0.01 \times V_2$

 $V_2 = 10$ litre.

Volume of water added = 9 litre.

- 10. Which one of the following molecules is expected to exhibit diamagnetic behaviour?
 - $(1) N_2$

(2) O_2

(3) S_2

(4) C_2

(1) & (4) both are correct answers. Sol.

 $N_2 \rightarrow Diamagnetic$

 $O_2 \rightarrow Paramagnetic$

 $S_2 \rightarrow Paramagnetic$

$C_2 \rightarrow Diamagnetic$

- 11. Which of the following arrangements does **not** represent the correct order of the property stated against it?

 - (1) $Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$: ionic size (2) $Co^{3+} < Fe^{3+} < Cr^{3+} < Sc^{3+}$: stability in aqueous solution

 - (3) Sc < Ti < Cr < Mn : number of oxidation states
 (4) V²⁺ < Cr²⁺ < Mn²⁺ < Fe²⁺ : paramagnetic behaviour

Sol. (2) & (4) both are correct answers)

The exothermic hydration enthalpies of the given trivalent cations are:

 $Sc^{+3} = 3960 \text{ kJ/mole}$

 $Fe^{+3} = 4429 \text{ kJ/mole}$

 $Co^{+3} = 4653 \text{ kJ/mole}$

 $Cr^{+3} = 4563 \text{ kJ/mole}$

Hence Sc⁺³ is least hydrated; so least stable (not most stable)

Fe⁺² contains 4 unpaired electrons where as Mn⁺² contains 5 unpaired electrons hence (4) is incorrect.

- Experimentally it was found that a metal oxide has formula $M_{0.98}O$. Metal M, is present as M^{2+} and M^{3+} in 12. its oxide. Fraction of the metal which exists as M³⁺ would be:
 - (1) 4.08%

(2) 6.05%

(3) 5.08%

(4) 7.01%

Sol. **(1)**

Metal oxide = $M_{0.98}O$

If 'x' ions of M are in +3 state, then

$$3x + (0.98 - x) \times 2 = 2$$

So the percentage of metal in +3 state would be $\frac{0.04}{0.98} \times 100 = 4.08\%$

- 13. A compound with molecular mass 180 is acylated with CH₃COCl to get a compound with molecular mass 390. The number of amino groups present per molecule of the former compound is:
 - (1) 5

(3) 6

(4) 2

$$R - NH_2 + CH_3 - C - C1 \longrightarrow R - NH - C - CH_3 + HC1$$

Each CH₃ – C addition increases the molecular wt. by 42.

Total increase in m.wt. = 390 - 180 = 210

Then number of NH₂ groups = $\frac{210}{42}$ = 5

14.

$$E_{Cr^{3+}/Cr}^{0} = -0.74 \text{ V}; E_{MnO_{4}^{-}/Mn^{2+}}^{0} = 1.51 \text{ V}$$

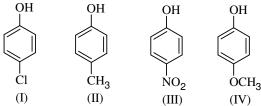
$$E^0_{\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}} = 1.33 \ V; \ E^0_{\text{Cl/Cl}^-} = 1.36 \ V$$

Based on the data given above, strongest oxidising agent will be:

(1) Cr^{3+}

(2) Mn^{2+}

(3) MnO₄


(4) Cl⁻

Sol. **(3)**

As per data mentioned

MnO₄ is strongest oxidising agent as it has maximum SRP value.

15. Arrange the following compounds in order of decreasing acidity:

- (1) I>II>III>IV
- (3) IV > III > I > II

- $(2) \quad III > I > II > IV$
- $(4) \quad II > IV > I > III$

Sol. (2)

Correct order of acidic strength is III > I > II > IV

16. The rate of a reaction doubles when its temperature changes from 300K to 310K. Activation energy of such a reaction will be:

 $(R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1} \text{ and log } 2 = 0.301)$

(1) 48.6 kJ mol⁻¹

(2) 58.5 kJ mol⁻¹

(3) 60.5 kJ mol⁻¹

(4) 53.6 kJ mol⁻¹

Sol. (4)

As per Arrhenius equation:

$$\ln \frac{\mathbf{k}_2}{\mathbf{k}_1} = -\frac{\mathbf{E}_a \stackrel{\text{def}}{\mathbf{E}} \mathbf{1}}{\mathbf{R} \stackrel{\text{def}}{\mathbf{E}} \mathbf{T}_2} - \frac{1}{\mathbf{T}_1 \stackrel{\text{def}}{\mathbf{\Phi}}}$$

$$2.303 \log 2 = -\frac{E_a}{8.314} \frac{\cancel{x}}{\cancel{\xi}} \frac{1}{310} - \frac{1}{300} \frac{\ddot{0}}{\cancel{\phi}}$$

 \Rightarrow E_a = 53.6 kJ/mole

- 17. Synthesis of each molecule of glucose in photosynthesis involves:
 - (1) 10 molecules of ATP

(2) 8 molecules of ATP

(3) 6 molecules of ATP

(4) 18 molecules of ATP

Sol. (4

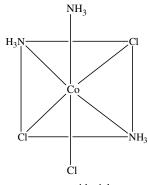
 $12H_2O + 12NADP + 18ADP \xrightarrow{\text{Light reaction}} 6O_2 + 18ATP + 12NADPH$

$$6\text{CO}_2 + 12\text{NADPH} + 18\text{ATP} \xrightarrow{\text{Dark reaction}} \text{C}_6\text{H}_{12}\text{O}_6 + 12\text{NADP} + 18\text{ADP} + 6\text{H}_2\text{O}_6$$

Net reaction: $6CO_2 + 6H_2O \longrightarrow C_6H_{12}O_6 + 6O_2$

- 18. Which of the following complex species is not expected to exhibit optical isomerism?
 - (1) $\left[\text{Co(en)}_2 \text{Cl}_2 \right]^+$

(2) $\left[\operatorname{Co}\left(\operatorname{NH}_{3}\right)_{3}\operatorname{Cl}_{3}\right]$


(3) $\left[\text{Co(en)(NH}_3)_2 \text{Cl}_2 \right]^+$

(4) $\left[\operatorname{Co}(\operatorname{en})_{3}\right]^{3+}$

Sol. (2)

[Co(NH₃)₃Cl₃] exists in two forms (facial and meridonial)

meridonial

Both of these forms are achiral. Hence, [Co(NH₃)₃Cl₃] does not show optical isomerism.

19. A piston filled with 0.04 mol of an ideal gas expands reversibly from 50.0 mL to 375 mL at a constant temperature of 37.0° C. As it does so, it absorbs 208J of heat. The values of q and w for the process will be: (R = 8.314 J/mol K) (ℓ n 7.5 = 2.01)

(1) q = -208 J, w = -208 J

(2) q = -208 J, w = +208 J

(3) q = +208 J, w = +208 J

(4) q = +208 J, w = -208 J

Sol. (4)

Process is isothermal reversible expansion, hence $\Delta U = 0$.

 $\therefore q = -W$

As q = +208 J

Hence W = -208 J

20. A gaseous hydrocarbon gives upon combustion 0.72 g of water and 3.08 g of CO₂. The empirical formula of the hydrocarbon is:

(1) C_3H_4

(2) C_6H_5

(3) C_7H_8

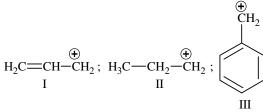
(4) C_2H_4

Sol. (3)

$$C_x H_y + \frac{x}{6} + \frac{y \ddot{0}}{4 \dot{0}} O_2 \frac{3}{4} \frac{3}{2} O_2 + \frac{y}{2} H_2 O$$

Weight(g)

3.08 g 0.72 g


moles

0.07 0.04

$$\frac{x}{y/2} = \frac{0.07}{0.04}$$

$$\dot{P} = \frac{x}{y} = \frac{7}{8}$$

21. The order of stability of the following carbocations:

is:

(1) II > III > I

(2) I>II>III

(3) III > I > II

 $(4) \quad III > II > I$

Sol. (3)

Order of stability is III > I > II.

(Stability ∝ extent of delocalization)

- 22. Which of the following represents the correct order of increasing first ionization enthalpy for Ca, Ba, S, Se and Ar?
 - (1) S < Se < Ca < Ba < Ar

(2) Ba < Ca < Se < S < Ar

(3) Ca < Ba < S < Se < Ar

(4) Ca < S < Ba < Se < Ar

Sol. (2)

Increasing order of first ionization enthalpy is

Ba < Ca < Se < S < Ar

For gaseous state, if most probable speed is denoated by C^* , average speed by \overline{C} and mean square speed by C, then for a large number of molecules the ratios of these speeds are:

(1) $C^*: \overline{C}: C = 1.128:1.225:1$

(2) $C^*: \overline{C}: C = 1:1.128:1.225$

(3) $C^*: \overline{C}: C = 1:1.125:1.128$

(4) $C^*:\overline{C}:C=1.225:1.128:1$

Sol. (2

$$\mathrm{C}^* = \sqrt{\frac{2\mathrm{RT}}{\mathrm{M}}} \; , \; \mathrm{\overline{C}} = \sqrt{\frac{8\mathrm{RT}}{\pi\mathrm{M}}} \; , \; \mathrm{C} = \sqrt{\frac{3\mathrm{RT}}{\mathrm{M}}}$$

- 24. The gas leaked from a storage tank of the Union Carbide plant in Bhopal gas tragedy was:
 - (1) Methylamine

(2) Ammonia

(3) Phosgene

(4) Methylisocyanate

Sol. (4)

It was methyl isocyanate (CH₃NCO)

25. Consider the following reaction:

$$xMnO_{4}^{-} + yC_{2}O_{4}^{2-} + zH^{+} \frac{3}{4} \frac{3}{2} xMn^{2+} + 2yCO_{2} + \frac{z}{2}H_{2}O$$

The values of x, y and z in the reaction are, respectively:

(1) 2, 5 and 8

(2) 2, 5 and 16

(3) 5, 2 and 8

(4) 5, 2 and 16

Sol. (2)

$$2\text{MnO}_4^- + 5\text{C}_2\text{O}_4^{-2} + 16\text{H}^+ \longrightarrow 2\text{Mn}^{+2} + 10\text{CO}_2 + 8\text{H}_2\text{O}$$

$$x = 2$$
, $y = 5$, $z = 16$

- 26. Which of the following exists as covalent crystals in the solid state?
 - (1) Silicon

(2) Sulphur

(3) Phosphorous

(4) Iodine

Sol. (1)

Silicon (Si) - covalent solid

Sulphur (S_8) – molecular solid

Phosphorous (P₄) – Molecular solid

Iodine (I_2) – Molecular solid

27. Compound (A), C₈H₉Br, gives a white precipitate when warmed with alcoholic AgNO₃. Oxidation of (A) gives a acid (B), C₈H₆O₄. (B) easily forms anhydride on heating. Identify the compound (A).

$$\begin{array}{c} \text{CH}_2\text{Br} \\ \hline \\ \text{CH}_3 \end{array}$$

$$\begin{array}{c} \text{(3)} \\ \hline \\ \text{CH}_{3} \end{array}$$

(4)
$$CH_3$$
 CH_2Br CH_3

$$\begin{array}{c} \text{CH}_2\text{Br} \\ \text{CH}_3 \end{array} \xrightarrow{\text{AgNO}_3(\text{alc.})} \begin{array}{c} \text{CH}_2^+ \\ \text{CH}_3 \end{array} + \begin{array}{c} \text{AgBr} \downarrow \\ \text{(pale yellow)} \end{array}$$

Energy of an electron is given by $E = -2.178^{\circ} 10^{-18} J_{\frac{1}{8}}^{\frac{1}{8}} \frac{\ddot{0}}{2}$. Wavelength of light required to excite an 28.

electron in an hydrogen atom from level n = 1 to n = 2 will be (h = 6.62×10^{-34} Js and c = 3.0×10^8 ms⁻¹) (1) 2.816×10^{-7} m (3) 8.500×10^{-7} m

(1)
$$2.816 \times 10^{-7}$$
 m

(2)
$$6.500 \times 10^{-7} \text{ m}$$

(3)
$$8.500 \times 10^{-7}$$
 m

(4)
$$1.214 \times 10^{-7}$$
 m

E =
$$\frac{hc}{\lambda}$$
 = 2.178×10⁻¹⁸×Z² $\left[\frac{1}{1^2} - \frac{1}{2^2}\right]$
 $\Rightarrow \lambda = 1.214 \times 10^{-7} \text{ m}$

29. An organic compound A upon reacting with NH3 gives B. On heating B gives C. C in presence of KOH reacts with Br₂ to give CH₃CH₂NH₂. A is

Sol. **(3)**

- 30. In which of the following pairs of molecules/ions, both the species are not likely to exist?
 - (1) H_2^- , He_2^{2-}

(2) H_2^{2+} , He_2

(3) H_2^- , He_2^{2+}

(4) H_2^+ , He_2^{2-}

Sol. (2)

Bond order of H_2^{2+} and He_2 is zero, thus their existence is not possible.