PART III: MATHEMATICS

SECTION - I (Total Marks: 24)

(Single Correct Answer Type)

This section contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct.

Let P(6,3) be a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. If the normal at the point P intersects 41. the x-axis at (9, 0), then the eccentricity of the hyperbola is

(A)
$$\sqrt{\frac{5}{2}}$$

(B)
$$\sqrt{\frac{3}{2}}$$

(C)
$$\sqrt{2}$$

(D) $\sqrt{3}$

ANSWER: B

42. A value of b for which the equations

$$x^2 + bx - 1 = 0$$
$$x^2 + x + b = 0.$$

have one root in common is

(A)
$$-\sqrt{2}$$

(B)
$$-i\sqrt{3}$$

(C)
$$i\sqrt{5}$$

(D)
$$\sqrt{2}$$

ANSWER: B

43. Let $\omega \neq 1$ be a cube root of unity and S be the set of all non-singular matrices of the form

$$\begin{bmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end{bmatrix},$$

where each of a, b, and c is either ω or ω^2 . Then the number of distinct matrices in the set S is

(A) 2

(B)

(C) 4

(D) 8

ANSWER: A

The circle passing through the point (-1,0) and touching the y-axis at (0,2) also 44. passes through the point

(A) $\left(-\frac{3}{2}, 0\right)$ (B) $\left(-\frac{5}{2}, 2\right)$ (C) $\left(-\frac{3}{2}, \frac{5}{2}\right)$ (D) $\left(-4, 0\right)$

ANSWER : D

45. lf

$$\lim_{x \to 0} \left[1 + x \ln(1 + b^2) \right]^{\frac{1}{x}} = 2b \sin^2 \theta, \ b > 0 \text{ and } \theta \in (-\pi, \pi],$$

then the value of θ is

- (A) $\pm \frac{\pi}{4}$ (B) $\pm \frac{\pi}{3}$ (C) $\pm \frac{\pi}{6}$ (D) $\pm \frac{\pi}{2}$

ANSWER: D

- Let $f:[-1,2] \to [0,\infty)$ be a continuous function such that f(x) = f(1-x) for all $x \in [-1,2]$. 46. Let $R_1 = \int_0^x x f(x) dx$, and R_2 be the area of the region bounded by y = f(x), x = -1, x = 2, and the x-axis. Then

- (A) $R_1 = 2R_2$ (B) $R_1 = 3R_2$ (C) $2R_1 = R_2$ (D) $3R_1 = R_2$

ANSWER: C

- Let $f(x) = x^2$ and $g(x) = \sin x$ for all $x \in \mathbb{R}$. Then the set of all x satisfying 47. $(f \circ g \circ g \circ f)(x) = (g \circ g \circ f)(x)$, where $(f \circ g)(x) = f(g(x))$, is
 - (A) $\pm \sqrt{n\pi}$, $n \in \{0, 1, 2, ...\}$ (B) $\pm \sqrt{n\pi}$, $n \in \{1, 2, ...\}$
 - (C) $\frac{\pi}{2} + 2n\pi$, $n \in \{..., -2, -1, 0, 1, 2, ...\}$ (D) $2n\pi$, $n \in \{..., -2, -1, 0, 1, 2, ...\}$

ANSWER: A

- Let (x, y) be any point on the parabola $y^2 = 4x$. Let P be the point that divides the line 48. segment from (0, 0) to (x, y) in the ratio 1:3. Then the locus of P is
 - (A) $x^2 = y$
- (B) $y^2 = 2x$ (C) $y^2 = x$ (D) $x^2 = 2y$

ANSWER: C

SECTION – II (Total Marks : 16)

(Multiple Correct Answer(s) Type)

This section contains 4 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which **ONE or MORE** may be correct.

49. lf

$$f(x) = \begin{cases} -x - \frac{\pi}{2}, & x \le -\frac{\pi}{2} \\ -\cos x, & -\frac{\pi}{2} < x \le 0 \\ x - 1, & 0 < x \le 1 \\ \ln x, & x > 1, \end{cases}$$

then

- (A) f(x) is continuous at $x = -\frac{\pi}{2}$ (B) f(x) is not differentiable at x = 0
- (C) f(x) is differentiable at x = 1 (D) f(x) is differentiable at $x = -\frac{3}{2}$

ANSWER: ABCD

Let E and F be two independent events. The probability that exactly one of them occurs 50. is $\frac{11}{25}$ and the probability of none of them occurring is $\frac{2}{25}$. If P(T) denotes the probability of occurrence of the event T, then

(A)
$$P(E) = \frac{4}{5}, P(F) = \frac{3}{5}$$

(B)
$$P(E) = \frac{1}{5}, P(F) = \frac{2}{5}$$

(C)
$$P(E) = \frac{2}{5}, P(F) = \frac{1}{5}$$

(A)
$$P(E) = \frac{4}{5}$$
, $P(F) = \frac{3}{5}$
(B) $P(E) = \frac{1}{5}$, $P(F) = \frac{2}{5}$
(C) $P(E) = \frac{2}{5}$, $P(F) = \frac{1}{5}$
(D) $P(E) = \frac{3}{5}$, $P(F) = \frac{4}{5}$

ANSWER: AD

51. Let L be a normal to the parabola $y^2 = 4x$. If L passes through the point (9, 6), then L is given by

(A)
$$y - x + 3 = 0$$

(B)
$$y + 3x - 33 = 0$$

(C)
$$y + x - 15 = 0$$

(D)
$$y-2x+12=0$$

ANSWER: ABD

52. Let $f:(0,1)\to\mathbb{R}$ be defined by

$$f(x) = \frac{b - x}{1 - bx},$$

where b is a constant such that 0 < b < 1. Then

(A) f is not invertible on (0, 1)

(B)
$$f \neq f^{-1}$$
 on $(0, 1)$ and $f'(b) = \frac{1}{f'(0)}$

(C)
$$f = f^{-1}$$
 on $(0, 1)$ and $f'(b) = \frac{1}{f'(0)}$

(D) f^{-1} is differentiable on (0, 1)

ANSWER: A

SECTION - III (Total Marks: 24)

(Integer Answer Type)

This section contains **6 questions**. The answer to each of the questions is a **single-digit integer**, ranging from 0 to 9. The bubble corresponding to the correct answer is to be darkened in the ORS.

53. Let $\omega = e^{i\pi/3}$, and a, b, c, x, y, z be non-zero complex numbers such that

$$a+b+c = x$$
$$a+b\omega+c\omega^2 = y$$
$$a+b\omega^2+c\omega = z.$$

Then the value of $\frac{|x|^2 + |y|^2 + |z|^2}{|a|^2 + |b|^2 + |c|^2}$ is

ANSWER: MARKS TO ALL

54. The number of distinct real roots of $x^4 - 4x^3 + 12x^2 + x - 1 = 0$ is

ANSWER: 2

55. Let y'(x) + y(x)g'(x) = g(x)g'(x), y(0) = 0, $x \in \mathbb{R}$, where f'(x) denotes $\frac{d f(x)}{dx}$ and g(x) is a given non-constant differentiable function on \mathbb{R} with g(0) = g(2) = 0. Then the value of y(2) is

ANSWER: 0

56. Let M be a 3×3 matrix satisfying

$$M\begin{bmatrix}0\\1\\0\end{bmatrix} = \begin{bmatrix}-1\\2\\3\end{bmatrix}, \quad M\begin{bmatrix}1\\-1\\0\end{bmatrix} = \begin{bmatrix}1\\1\\-1\end{bmatrix}, \text{ and } M\begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}0\\0\\12\end{bmatrix}.$$

Then the sum of the diagonal entries of M is

ANSWER: 9

57. Let $\vec{a} = -\hat{i} - \hat{k}$, $\vec{b} = -\hat{i} + \hat{j}$ and $\vec{c} = \hat{i} + 2\hat{j} + 3\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$, then the value of $\vec{r} \cdot \vec{b}$ is

ANSWER: 9

58. The straight line 2x-3y=1 divides the circular region $x^2+y^2 \le 6$ into two parts. If

$$S = \left\{ \left(2, \frac{3}{4}\right), \left(\frac{5}{2}, \frac{3}{4}\right), \left(\frac{1}{4}, -\frac{1}{4}\right), \left(\frac{1}{8}, \frac{1}{4}\right) \right\},\right\}$$

then the number of point(s) in S lying inside the smaller part is

ANSWER: 2

SECTION - IV (Total Marks: 16)

(Matrix-Match Type)

This section contains **2 questions**. Each question has **four statements** (A, B, C and D) given in **Column I** and **five statements** (p, q, r, s and t) in **Column II**. Any given statement in Column I can have correct matching with **ONE** or **MORE** statement(s) given in Column II. For example, if for a given question, statement B matches with the statements given in q and r, then for the particular question, against statement B, darken the bubbles corresponding to q and r in the ORS.

59. Match the statements given in Column I with the values given in Column II

Column I

- (A) If $\vec{a} = \hat{j} + \sqrt{3}\,\hat{k}$, $\vec{b} = -\hat{j} + \sqrt{3}\,\hat{k}$ and $\vec{c} = 2\sqrt{3}\,\hat{k}$ form a triangle, then the internal angle of the triangle between \vec{a} and \vec{b} is
- (B) If $\int_a^b (f(x)-3x)dx = a^2-b^2$, then the value of $f\left(\frac{\pi}{6}\right)$ is
- (C) The value of $\frac{\pi^2}{\ln 3} \int_{\frac{\pi}{6}}^{\frac{5}{6}} \sec(\pi x) dx$ is
- (D) The maximum value of $\left| Arg\left(\frac{1}{1-z}\right) \right|$ for $\left| z \right| = 1$, $z \neq 1$ is given by

Column II

- (p) $\frac{\pi}{6}$
- $(q) \quad \frac{2\pi}{3}$
- (r) $\frac{\pi}{3}$
- (s) π
- (t) $\frac{\pi}{2}$

ANSWER A: q

B:porp,q,r,s and t

U:S D:t 60. Match the statements given in Column I with the intervals/union of intervals given in Column II

Column I

- (A) The set $\left\{\operatorname{Re}\left(\frac{2iz}{1-z^2}\right): z \text{ is a complex number, } \left|z\right|=1, \ z\neq\pm1\right\}$ is
- (B) The domain of the function $f(x) = \sin^{-1}\left(\frac{8(3)^{x-2}}{1-3^{2(x-1)}}\right) \text{ is}$
- (C) If $f(\theta) = \begin{vmatrix} 1 & \tan \theta & 1 \\ -\tan \theta & 1 & \tan \theta \\ -1 & -\tan \theta & 1 \end{vmatrix}$, then the set $\left\{ f(\theta) : 0 \le \theta < \frac{\pi}{2} \right\} \text{ is }$
- (D) If $f(x) = x^{3/2}(3x-10)$, $x \ge 0$, then f(x) is increasing in

Column II

- $(p) \quad (-\infty, -1) \cup (1, \infty)$
- (q) $(-\infty, 0) \cup (0, \infty)$
- (r) $[2, \infty)$
- (s) $(-\infty, -1] \cup [1, \infty)$
- (t) $(-\infty, 0] \cup [2, \infty)$

ANSWER A:s

B : t

C : r

D : 1