PART III: MATHEMATICS

SECTION - I (Total Marks: 21)

(Single Correct Answer Type)

This section contains **7 multiple choice questions**. Each question has four choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct.

47. Let (x_0, y_0) be the solution of the following equations

$$(2x)^{\ln 2} = (3y)^{\ln 3}$$

 $3^{\ln x} = 2^{\ln y}$.

Then x_0 is

(A) $\frac{1}{6}$

(B) $\frac{1}{3}$

(C) $\frac{1}{2}$

(D) 6

ANSWER: C

48. The value of $\int_{\ln 2}^{\sqrt{\ln 3}} \frac{x \sin x^2}{\sin x^2 + \sin (\ln 6 - x^2)} dx$ is

(A) $\frac{1}{4} \ln \frac{3}{2}$

(B) $\frac{1}{2} \ln \frac{3}{2}$

(C) $\ln \frac{3}{2}$

(D) $\frac{1}{6} \ln \frac{3}{2}$

ANSWER: A

49. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} - \hat{k}$ be three vectors. A vector \vec{v} in the plane of \vec{a} and \vec{b} , whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$, is given by

(A) $\hat{i} - 3\hat{j} + 3\hat{k}$

(B) $-3\hat{i} - 3\hat{j} - \hat{k}$

(C) $3\hat{i} - \hat{j} + 3\hat{k}$

(D) $\hat{i} + 3\hat{j} - 3\hat{k}$

ANSWER: C

50. Let $P = \{\theta : \sin \theta - \cos \theta = \sqrt{2} \cos \theta\}$ and $Q = \{\theta : \sin \theta + \cos \theta = \sqrt{2} \sin \theta\}$ be two sets. Then

- (A) $P \subset Q$ and $Q P \neq \emptyset$
- (B) $Q \not\subset P$

(C) $P \not\subset Q$

(D) P = Q

ANSWER: D

51. Let the straight line x=b divide the area enclosed by $y=\left(1-x\right)^2$, y=0, and x=0 into two parts R_1 $\left(0 \le x \le b\right)$ and R_2 $\left(b \le x \le 1\right)$ such that $R_1-R_2=\frac{1}{4}$. Then b equals

- (A) $\frac{3}{4}$
- (B) $\frac{1}{2}$
- (C) $\frac{1}{3}$
- (D) $\frac{1}{4}$

ANSWER: B

52. Let α and β be the roots of $x^2-6x-2=0$, with $\alpha>\beta$. If $a_n=\alpha^n-\beta^n$ for $n\geq 1$, then the value of $\frac{a_{10}-2a_8}{2a_9}$ is

(A) 1

(B) 2

(C) 3

(D) 4

ANSWER: C

53. A straight line L through the point (3,-2) is inclined at an angle 60° to the line $\sqrt{3}x + y = 1$. If L also intersects the x-axis, then the equation of L is

(A) $y + \sqrt{3}x + 2 - 3\sqrt{3} = 0$

(B) $y - \sqrt{3}x + 2 + 3\sqrt{3} = 0$

(C) $\sqrt{3}y - x + 3 + 2\sqrt{3} = 0$

(D) $\sqrt{3}y + x - 3 + 2\sqrt{3} = 0$

ANSWER: B

SECTION – II (Total Marks: 16)

(Multiple Correct Answers Type)

This section contains 4 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which **ONE or MORE** may be correct.

- The vector(s) which is/are coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$, and 54. perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$ is/are
 - (A) $\hat{i} \hat{k}$

- (B) $-\hat{i} + \hat{j}$ (C) $\hat{i} \hat{j}$ (D) $-\hat{j} + \hat{k}$

ANSWER: AD

- 55. Let M and N be two 3×3 non-singular skew-symmetric matrices such that MN=NM. If P^{T} denotes the transpose of P, then $M^{2}N^{2}(M^{T}N)^{-1}(MN^{-1})^{T}$ is equal to
 - (A) M^2
- (B) $-N^2$
- (C) $-M^2$
- (D) MN

ANSWER: MARKS TO ALL

- Let the eccentricity of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ be reciprocal to that of the ellipse 56. $x^2 + 4y^2 = 4$. If the hyperbola passes through a focus of the ellipse, then
 - the equation of the hyperbola is $\frac{x^2}{3} \frac{y^2}{2} = 1$
 - (B) a focus of the hyperbola is (2, 0)
 - the eccentricity of the hyperbola is $\sqrt{\frac{5}{3}}$
 - the equation of the hyperbola is $x^2 3y^2 = 3$

ANSWER: BD

57. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that

$$f(x+y) = f(x) + f(y), \forall x, y \in \mathbb{R}.$$

If f(x) is differentiable at x = 0, then

- (A) f(x) is differentiable only in a finite interval containing zero
- (B) f(x) is continuous $\forall x \in \mathbb{R}$
- (C) f'(x) is constant $\forall x \in \mathbb{R}$
- (D) f(x) is differentiable except at finitely many points

ANSWER: BC, BCD

SECTION - III (Total Marks: 15)

(Paragraph Type)

This section contains 2 paragraphs. Based upon one of the paragraphs 3 multiple choice questions and based on the other paragraph 2 multiple choice questions have to be answered. Each of these questions has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Paragraph for Question Nos. 58 to 60

Let a, b and c be three real numbers satisfying

$$\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} 1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \qquad \dots (E)$$

- 58. If the point P(a, b, c), with reference to (E), lies on the plane 2x + y + z = 1, then the value of 7a + b + c is
 - (A) 0
- (B) 12
- (C) 7
- (D) 6

ANSWER: D

59. Let ω be a solution of $x^3 - 1 = 0$ with $\text{Im}(\omega) > 0$. If a = 2 with b and c satisfying (E), then the value of

$$\frac{3}{\omega^a} + \frac{1}{\omega^b} + \frac{3}{\omega^c}$$

is equal to

- (A) -2
- (B) 2
- (C) 3
- (D) -3

ANSWER: A

60. Let b=6, with a and c satisfying (E). If α and β are the roots of the quadratic equation $ax^2+bx+c=0$, then

$$\sum_{n=0}^{\infty} \left(\frac{1}{\alpha} + \frac{1}{\beta} \right)^n$$

is

- (A) 6
- (B) 7
- (C) $\frac{6}{7}$
- (D) ∞

ANSWER: B

Paragraph for Question Nos. 61 and 62

Let $U_{\rm 1}$ and $U_{\rm 2}$ be two urns such that $U_{\rm 1}$ contains 3 white and 2 red balls, and $U_{\rm 2}$ contains only 1 white ball. A fair coin is tossed. If head appears then 1 ball is drawn at random from U_1 and put into U_2 . However, if tail appears then 2 balls are drawn at random from U_1 and put into U_2 . Now 1 ball is drawn at random from U_2 .

- The probability of the drawn ball from U_2 being white is 61.
 - (A)
- (B) $\frac{23}{30}$ (C) $\frac{19}{30}$
- (D) $\frac{11}{30}$

ANSWER: B

- Given that the drawn ball from $\,U_{\scriptscriptstyle 2}\,$ is white, the probability that head appeared on the coin 62. is
 - (A)
- (B) $\frac{11}{23}$
- (C) $\frac{15}{23}$
- (D) $\frac{12}{23}$

ANSWER: D

SECTION - IV (Total Marks: 28)

(Integer Answer Type)

This section contains **7 questions**. The answer to each of the questions is a **single-digit integer**, ranging from 0 to 9. The bubble corresponding to the correct answer is to be darkened in the ORS.

63. Consider the parabola $y^2 = 8x$. Let Δ_1 be the area of the triangle formed by the end points of its latus rectum and the point $P\left(\frac{1}{2},2\right)$ on the parabola, and Δ_2 be the area of the triangle formed by drawing tangents at P and at the end points of the latus rectum. Then $\frac{\Delta_1}{\Delta_2}$ is

ANSWER: 2

64. Let a_1 , a_2 , a_3 , ..., a_{100} be an arithmetic progression with $a_1 = 3$ and $S_p = \sum_{i=1}^p a_i$, $1 \le p \le 100$. For any integer n with $1 \le n \le 20$, let m = 5n. If $\frac{S_m}{S_n}$ does not depend on n, then a_2 is

ANSWER: 3, 9, 3 & 9 BOTH

65. The positive integer value of n > 3 satisfying the equation

$$\frac{1}{\sin\left(\frac{\pi}{n}\right)} = \frac{1}{\sin\left(\frac{2\pi}{n}\right)} + \frac{1}{\sin\left(\frac{3\pi}{n}\right)}$$

is

ANSWER:7

66. Let $f:[1,\infty)\to[2,\infty)$ be a differentiable function such that f(1)=2. If

$$6\int_{1}^{x} f(t) dt = 3x f(x) - x^{3}$$

for all $x \ge 1$, then the value of f(2) is

ANSWER: MARKS TO ALL

67. If z is any complex number satisfying $|z-3-2i| \le 2$, then the minimum value of |2z-6+5i| is

ANSWER: 5

68. The minimum value of the sum of real numbers a^{-5} , a^{-4} , $3a^{-3}$, 1, a^{8} and a^{10} with a > 0 is

ANSWER:8

69. Let
$$f(\theta) = \sin\left(\tan^{-1}\left(\frac{\sin\theta}{\sqrt{\cos 2\theta}}\right)\right)$$
, where $-\frac{\pi}{4} < \theta < \frac{\pi}{4}$. Then the value of

$$\frac{d}{d(\tan\theta)} \big(f(\theta) \big)$$

is

ANSWER: 1