PART I: CHEMISTRY

SECTION - I (Total Marks: 24)

(Single Correct Answer Type)

This section contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

- 1. Oxidation states of the metal in the minerals haematite and magnetite, respectively, are
 - (A) II, III in haematite and III in magnetite
 - (B) II, III in haematite and II in magnetite
 - (C) II in haematite and II, III in magnetite
 - (D) III in haematite and II, III in magnetite

ANSWER: D

2. Among the following complexes (**K**-**P**),

 ${\rm K_{3}[Fe(CN)_{6}]} \; (\textbf{K}), \; {\rm [Co(NH_{3})_{6}]Cl_{3}} \; (\textbf{L}), \; {\rm Na_{3}[Co(oxalate)_{3}]} \; (\textbf{M}), \; {\rm [Ni(H_{2}O)_{6}]Cl_{2}} \; (\textbf{N}), \; {\rm (Ni(H_{2}O)_{6})Cl_{2}} \; (\textbf{N}), \; {\rm (Ni(H_{2}O)_{6})C$

 $K_{2}[Pt(CN)_{4}]$ (**O**) and $[Zn(H_{2}O)_{6}](NO_{3})_{2}$ (**P**)

the diamagnetic complexes are

- (A) K, L, M, N
- (B) K, M, O, P
- (C) L, M, O, P
- (D) L, M, N, O

ANSWER: C

- 3. Passing H₂S gas into a mixture of Mn²⁺, Ni²⁺, Cu²⁺ and Hg²⁺ ions in an acidified aqueous solution precipitates
 - (A) CuS and HgS

(B) MnS and CuS

(C) MnS and NiS

(D) NiS and HgS

ANSWER: A

4. Consider the following cell reaction:

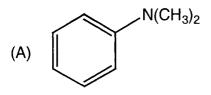
 $2Fe_{(s)} + O_{2(g)} + 4H^{+}_{(aq)} \rightarrow 2Fe^{2^{+}_{(aq)}} + 2H_{2}O(l)$ $E^{0} = 1.67 \text{ V}$

At $[Fe^{2+}] = 10^{-3}$ M, $P(O_2) = 0.1$ atm and pH = 3, the cell potential at 25 °C is

- (A) 1.47 V
- (B) 1.77 V
- (C) 1.87 V
- (D) 1.57 V

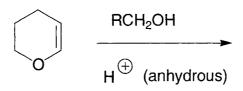
ANSWER: D

The freezing point (in $^{\circ}$ C) of a solution containing 0.1 g of $K_{3}[Fe(CN)_{6}]$ (Mol. Wt. 329) in 5. 100 g of water ($K_f = 1.86 \text{ K kg mol}^{-1}$) is


(A)
$$-2.3 \times 10^{-2}$$

(B)
$$-5.7 \times 10^{-2}$$

(B)
$$-5.7 \times 10^{-2}$$
 (C) -5.7×10^{-3} (D) -1.2×10^{-2}


(D)
$$-1.2 \times 10^{-2}$$

Amongst the compounds given, the one that would form a brilliant colored dye on 6. treatment with NaNO2 in dil. HCl followed by addition to an alkaline solution of β-naphthol is

ANSWER: C

7. The major product of the following reaction is

(A) a hemiacetal (B) an acetal

an ether (C)

an ester (D)

ANSWER: B

8. The following carbohydrate is

(A) a ketohexose

(B) an aldohexose

(C) an α -furanose (D) an α -pyranose

ANSWER: B

SECTION – II (Total Marks: 16)

(Multiple Correct Answer(s) Type)

This section contains 4 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE may be correct.

- 9. Reduction of the metal centre in aqueous permanganate ion involves
 - (A) 3 electrons in neutral medium
- (B) 5 electrons in neutral medium
- (C) 3 electrons in alkaline medium
- (D) 5 electrons in acidic medium

ANSWER: ACD

10. The equilibrium

in aqueous medium at 25 °C shifts towards the left in the presence of

- $(A) NO_3$
- (B) Cl
- (C) SCN
- (D) CN

ANSWER: BCD

11. For the first order reaction

$$2N_2O_5(g) \to 4NO_2(g) + O_2(g)$$

- (A) the concentration of the reactant decreases exponentially with time.
- (B) the half-life of the reaction decreases with increasing temperature.
- (C) the half-life of the reaction depends on the initial concentration of the reactant.
- the reaction proceeds to 99.6 % completion in eight half-life duration. (D)

ANSWER: ABD

12. The correct functional group X and the reagent/reaction conditions Y in the following scheme are

- (A) $X = COOCH_3$, $Y = H_2/Ni/heat$ (B) $X = CONH_2$, $Y = H_2/Ni/heat$
- (C) $X = CONH_2$, $Y = Br_2/NaOH$ (D) X = CN, $Y = H_2/Ni/heat$

ANSWER: CD

SECTION - III (Total Marks: 24)

(Integer Answer Type)

This section contains **6 questions**. The answer to each of the questions is a **single-digit integer**, ranging from 0 to 9. The bubble corresponding to the correct answer is to be darkened in the ORS.

13. Among the following, the number of compounds than can react with PCl_5 to give $POCl_3$ is O_2 , CO_2 , SO_2 , H_2O , H_2SO_4 , P_4O_{10}

ANSWER: 4

14. The volume (in mL) of 0.1 M $AgNO_3$ required for complete precipitation of chloride ions present in 30 mL of 0.01 M solution of $[Cr(H_2O)_5Cl]Cl_2$, as silver chloride is close to

ANSWER: 6

15. In 1 L saturated solution of $AgCl [K_{sp}(AgCl) = 1.6 \times 10^{-10}]$, 0.1 mol of $CuCl [K_{sp}(CuCl) = 1.0 \times 10^{-6}]$ is added. The resultant concentration of Ag^+ in the solution is 1.6×10^{-x} . The value of "x" is

ANSWER: 7

16. The number of hexagonal faces that are present in a truncated octahedron is

ANSWER: 8

17. The maximum number of isomers (including stereoisomers) that are possible on monochlorination of the following compound, is

ANSWER: 8

18. The total number of contributing structures showing hyperconjugation (involving C-H bonds) for the following carbocation is

ANSWER: 6

SECTION – IV (Total Marks: 16)

(Matrix-Match Type)

This section contains **2 questions**. Each question has **four statements** (A, B, C and D) given in **Column I** and **five statements** (p, q, r, s and t) in **Column II**. Any given statement in Column I can have correct matching with **ONE** or **MORE** statement(s) given in Column II. For example, if for a given question, statement B matches with the statements given in q and r, then for the particular question, against statement B, darken the bubbles corresponding to q and r in the ORS.

19. Match the transformations in column I with appropriate options in column II

	Column I		Column II
(A)	$CO_2(s) \rightarrow CO_2(g)$	(p)	phase transition
(B)	$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$	(p)	allotropic change
(C)	$2 H^{\bullet} \rightarrow H_2(g)$	(r)	ΔH is positive
(D)	$P_{\text{(white, solid)}} \rightarrow P_{\text{(red, solid)}}$	(s)	ΔS is positive
		(t)	ΔS is negative

ANSWER A: p, r and s

B:rands

C:t

D:p,q and t

20. Match the reactions in **column I** with appropriate types of steps/reactive intermediate involved in these reactions as given in **column II**

Column I

(B)
$$O$$
 $CH_2CH_2CH_2CI$ CH_3MgI CH_3

(D)
$$CH_2CH_2C(CH_3)_2$$
 H_2SO_4 H_3C CH_3

Column II

- (p) Nucleophilic substitution
- (q) Electrophilic substitution
- (r) Dehydration
- (s) Nucleophilic addition
- (t) Carbanion

ANSWER A: r, s and t

B:pands C:rands

D:qandr