SECTION - I (Single Correct Choice Type)

- 1. The complex showing a spin-only magnetic moment of 2.82 B.M. is
 - A) Ni(CO)₄
- B) $[NiCl_4]^{2-}$
- C) Ni(PPh₃)₄
- D) [Ni(CN)₄]²⁻

ANSWER: B

- 2. The species having pyramidal shape is
 - A) SO₃

- B) BrF₃
- C) SiO₃²⁻
- D) OSF₂

ANSWER: D

3. In the reaction
$$H_3C$$
 $\stackrel{O}{=}$ $\stackrel{(1) \text{NaOH/Br}_2}{\longrightarrow}$ $\stackrel{O}{=}$ $\stackrel{O}{=}$ $\stackrel{O}{=}$ the structure of the

Product T is

ANSWER: C

4. The compounds P, Q and S

were separately subjected to nitration using $\rm \,HNO_3/H_2SO_4$ mixture. The major product formed in each case respectively, is

ANSWER: C

5. The packing efficiency of the two-dimensional square unit cell shown below is

- A) 39.27%
- B) 68.02%
- C) 74.05%
- D) 78.54%

ANSWER: D

6. Assuming that Hund's rule is violated, the bond order and magnetic nature of the diatomic molecule ${\rm B}_2$ is										
A) 1 and diamagnetic C) 1 and paramagnetic										
B) 0 a	etic	D)	0 and	and paramagnetic						
ANSWER: A										
SECTION – II (Integer Type)										
7. The total number of diprotic acids among the following is										
$_{\mathrm{H_3PO_4}}$	H_2	SO_4		H_3P	O_3	H_2	CO_3		$H_2S_2O_7$	
H_3BO_3	H ₃	PO_2		H_2C	rO_4	H_2	so ₃			
ANSWER: 6										
8. Total number of geometrical isomers for the complex $[RhCl(CO)(PPh_3)(NH_3)]$ is										
ANSWER: 3										
9. Among the following, the number of elements showing only one non-zero oxidation										
state is										
О	C1,	F,	N,	P,	Sn,	T1,	Na,	Ti		
ANSWER: 2										
10. Silver (atomic weight = 108 g mol^{-1}) has a density of 10.5 g cm^{-3} . The number of										
silver atoms on a surface of area $10^{-12}~\mathrm{m}^2$ can be expressed in scientific notation										
as $y \times 10^x$. The value of x is										
				AN	SWER:	7				

11. One mole of an ideal gas is taken from \boldsymbol{a} to \boldsymbol{b} along two paths denoted by the solid and the dashed lines as shown in the graph below. If the work done along the solid line path is w_s and that along the dotted line path is w_d , then the integer closest to the ratio w_d/w_s is

ANSWER: 2

SECTION – III (Paragraph Type)

Paragraph for Questions 12 to 14.

Two aliphatic aldehydes P and Q react in the presence of aqueous K_2CO_3 to give compound R, which upon treatment with HCN provides compound S. On acidification and heating, S gives the product shown below :

12. The compounds P and Q respectively are

A)
$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_4
 CH_3
 CH_4
 CH_4
 CH_5
 CH_5
 CH_5
 CH_5
 CH_6
 CH_7
 C

ANSWER: B

13. The compound R is

ANSWER: A

14. The compound S is

ANSWER: D

Paragraph for Questions 15 to 17.

The hydrogen-like species Li^{2+} is in a spherically symmetric state S_1 with one radial node. Upon absorbing light the ion undergoes transition to a state S_2 . The state S_2 has one radial node and its energy is equal to the ground state energy of the hydrogen atom.

15. The state S₁ is

A) 1s

B) 2s

C) 2p

D) 3s

ANSWER: B

16. Energy of the state S_1 in units of the hydrogen atom ground state energy is

A) 0.75

- B) 1.50
- C) 2.25
- D) 4.50

ANSWER: C

17. The orbital angular momentum quantum number of the state S_2 is

A) 0

B) 1

C) 2

D) 3

ANSWER: B

SECTION - IV (Matrix Type)

18. Match the reactions in Column I with appropriate options in Column II.

Column I Column II

- A) $N_2CI + OH \frac{NaOH/H_2O}{0 C} N=N-OH$
- p) Racemic mixture

q) Addition reaction

C) C_{CH_3} C_{CH_3} C_{CH_3} C_{CH_3}

r) Substitution reaction

D) HS-CI Base S

- s) Coupling reaction
- t) Carbocation intermediate

ANSWER: A: r and s

B: t

C: p and q

 $\mathbf{D}: \mathbf{r}$

19. All the compounds listed in **Column I** react with water. Match the result of the respective reactions with the appropriate options listed in **Column II**.

Column I

A) (CH₃)₂SiCl₂

B) XeF₄

C) C1₂

D) VCl₅

Column II

p) Hydrogen halide formation

q) Redox reaction

r) Reacts with glass

s) Polymerization

t) O₂ formation

ANSWER: A: p and s

B: p and q and r and t

C: p and q

D: p