PART - II: CHEMISTRY

SECTION –1 (One or more options correct Type)

This section contains **8 multiple choice questions.** Each question has four choices (A), (B), (C) and (D) out of which **ONE or MORE** are correct.

- *21. The K_{sp} of Ag_2CrO_4 is 1.1×10^{-12} at 298K. The solubility (in mol/L) of Ag_2CrO_4 in a 0.1M $AgNO_3$ solution is
 - (A) 1.1×10^{-11}

(B) 1.1×10^{-10}

(C) 1.1×10^{-12}

(D) 1.1×10^{-9}

Sol. (B)

$$K_{sp} = 1.1 \times 10^{-12} = \left[Ag^{+}\right]^{2} \left[CrO_{4}^{-2}\right]$$

$$1.1 \times 10^{-12} = [0.1]^2 [s]$$

$$s = 1.1 \times 10^{-10}$$

22. In the following reaction, the product(s) formed is(are)

$$\begin{array}{c}
\text{OH} \\
\hline
\text{CHCl}_3 \\
\text{OH}^-
\end{array}$$
?

H₃C CHCl₂

Q

OH H₃C CHCl₂ OH CHO CH₃

- (A) P(major)
- (C) R(minor)

- R (B) Q(minor)
- (D) S(major)

Sol. (B, D)

$$\begin{array}{c|c}
OH & O \\
\hline
OH & O \\
OH & O \\
\hline
OH & O \\
OH & O \\
\hline
OH & O \\
OH & O \\
\hline
OH & O \\
OH & O \\
\hline
OH & O \\
OH & O \\
\hline
OH & O \\
\hline
OH & O \\
OH & O \\
\hline
OH & O \\
OH & O \\
\hline
OH & O \\
OH & O \\
\hline
OH & O \\
\hline
OH & O \\
OH & O \\
\hline
OH & O \\
OH & O \\
\hline
OH & O \\
\hline
OH & O \\
OH & O \\
\hline
OH & O \\
OH & O \\
\hline
OH$$

$$CHCl_3 + \overline{O}H \longrightarrow : CCl_2 + H_2O + Cl^-$$

$$\begin{array}{c} \overline{\text{CCI}}_2 \\ \overline{\text{CH}}_3 \end{array} \begin{array}{c} \overline{\text{CHCI}}_2 \\ \overline{\text{CH}}_3 \end{array} \begin{array}{c} \overline{\text{CHCI}}_2 \\ \overline{\text{CH}}_3 \end{array} \begin{array}{c} \overline{\text{CHO}} \\ \overline{\text{CHO}} \\ \overline{\text{CHO}} \end{array}$$

23. The major product(s) of the following reaction is (are)

(C) R

(B) Sol.

JEE(ADVANCED)2013-Paper 2-PCM-14

$$\begin{array}{c|c}
OH & OH \\
& Br_{2}(3equivalents)
\end{array}$$

$$\begin{array}{c}
Br \\
Br \\
(Q)
\end{array}$$

24. After completion of the reactions (I and II), the organic compound(s) in the reaction mixtures is(are)

Reaction I :
$$H_{3}C$$
 CH_{3}
 $Br_{2}(1.0 \text{ mol})$
 (1.0 mol)

Reaction II : $H_{3}C$
 CH_{3}
 $CH_{3}C$
 CH_{3}
 $CH_{3}C$
 $CH_{2}Br$
 $CH_{3}C$
 $CH_{2}Br$
 $CH_{3}C$
 $CH_{2}Br$
 $CH_{3}C$
 $CH_{3}C$

- (A) Reaction I: P and Reaction II: P
- (B) Reaction I: U, acetone and Reaction II:Q, acetone
- (C) Reaction I: T, U, acetone and Reaction II: P
- (D) Reaction I: R, acetone and Reaction II: S, acetone
- Sol. (C) Solve as per law of limiting reagent.

- 25. The correct statement(s) about O_3 is(are)
 - (A) O-O bond lengths are equal.
 - (C) O₃ is diamagnetic in nature.

- (B) Thermal decomposition of O₃ is endothermic.
- (D) O_3 has a bent structure.

*26. In the nuclear transmutation

$${}_{4}^{9}$$
Be + X $\longrightarrow {}_{4}^{8}$ Be + Y

(X, Y) is (are)

(A) (γ, n)

(C) (n, D)

(B) (p, D)

(D) (γ, p)

Sol. (A, B)

$${}^{9}_{4}Be + \gamma \longrightarrow {}^{8}_{4}Be + {}^{1}_{0}n$$

$${}_{4}^{9}$$
Be $+{}_{1}^{1}$ P $\longrightarrow {}_{4}^{8}$ Be $+{}_{1}^{2}$ H

Hence (A) and (B) are correct

27. The carbon-based reduction method is NOT used for the extraction of

(A) tin from SnO₂

(B) iron from Fe₂O₃

(C) aluminium from Al₂O₃

(D) magnesium from MgCO₃.CaCO₃

Sol. (C, D)

Fe₂O₃ and SnO₂ undergoes C reduction. Hence (C) and (D) are correct.

*28. The thermal dissociation equilibrium of CaCO₃(s) is studied under different conditions.

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

For this equilibrium, the correct statement(s) is(are)

- (A) ΔH is dependent on T
- (B) K is independent of the initial amount of CaCO₃
- (C) K is dependent on the pressure of CO₂ at a given T
- (D) ΔH is independent of the catalyst, if any

Sol. (A, B, D)

> For the equilibrium $CaCO_3(s) \rightleftharpoons CaO(S) + CO_2(g)$. The equilibrium constant (K) is independent of initial amount of CaCO₃ where as at a given temperature is independent of pressure of CO₂. ΔH is independent of catalyst and it depends on temperature.

Hence (A), (B) and (D) are correct.

SECTION-2 (Paragraph Type)

This section contains 4 paragraphs each describing theory, experiment, data etc. Eight questions relate to four paragraphs with two questions on each paragraph. Each question of a paragraph has only one correct answer among the four choices (A), (B), (C) and (D).

Paragraph for Question Nos. 29 and 30

An aqueous solution of a mixture of two inorganic salts, when treated with dilute HCl, gave a precipitate (P) and a filtrate (Q). The precipitate P was found to dissolve in hot water. The filtrate (Q) remained unchanged, when treated with H₂S in a dilute mineral acid medium. However, it gave a precipitate (R) with H₂S in an ammoniacal medium. The precipitate **R** gave a coloured solution (S), when treated with H_2O_2 in an aqueous NaOH medium.

29. The precipitate **P** contains

(A) Pb^{2+}

(B) Hg₂²⁺ (D) Hg²⁺

(C) Ag^+

Sol. (A)

- 30. The coloured solution **S** contains
 - (A) $Fe_2(SO_4)_3$

(B) CuSO₄

(C) ZnSO₄

(D) Na₂CrO₄

Sol. (D)

Solution for the Q. No. 29 to 30.

$$\begin{array}{l} Pb^{+2} + 2HCl \longrightarrow PbCl_{2} \xrightarrow{Hot \ Water} soluble. \\ Cr^{+3} \xrightarrow{H_{2}S} Cr(OH)_{3} \downarrow \\ Cr(OH)_{3} \xrightarrow{NaOH \ H_{2}O_{2}} Na_{2}CrO_{4} \\ Yellow solution \end{array}$$

Paragraph for Question Nos. 31 to 32

 ${\bf P}$ and ${\bf Q}$ are isomers of dicarboxylic acid $C_4H_4O_4$. Both decolorize Br_2/H_2O . On heating, ${\bf P}$ forms the cyclic anhydride.

Upon treatment with dilute alkaline KMnO₄, **P** as well as **Q** could produce one or more than one from **S**, **T** and **U**.

- *31. Compounds formed from **P** and **Q** are, respectively
 - (A) Optically active S and optically active pair (T, U)
 - (B) Optically inactive S and optically inactive pair (T, U)
 - (C) Optically active pair (T, U) and optically active S
 - (D) Optically inactive pair (T, U) and optically inactive S

$$\begin{array}{c|c} H & COOH \\ \hline C & & & \\ H & COOH \\ \hline P & & COOH \\ \hline \end{array} \qquad \begin{array}{c|c} COOH \\ \hline H & OH \\ \hline \\ COOH \\ \hline \end{array}$$

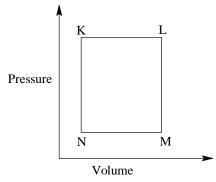
 $S \rightarrow optically inactive$

*32. In the following reaction sequences V and W are, respectively

$$Q \xrightarrow{H_2/N_i} \longrightarrow O$$

$$O$$

$$O$$


$$H_3PO_4$$

$$O$$

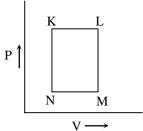
$$H_3PO_4$$

Paragraph for Question Nos. 33 to 34

A fixed mass 'm' of a gas is subjected to transformation of states from K to L to M to N and back to K as shown in the figure

- *33. The succeeding operations that enable this transformation of states are
 - (A) Heating, cooling, heating, cooling
- (B) Cooling, heating, cooling, heating
- (C) Heating, cooling, cooling, heating
- (D) Cooling, heating, heating, cooling

- Sol. (C)
- *34. The pair of isochoric processes among the transformation of states is
 - (A) K to L and L to M


(B) L to M and N to K

(C) L to M and M to N

(D) M to N and N to K

Sol. (B)

Solution for the Q. No. 33 to 34.

K – L heating, isobaric

L – M cooling, isochoric

M - N cooling, isobaric

N – K heating, isochoric

Paragraph for Question Nos. 35 to 36

The reactions of Cl_2 gas with cold-dilute and hot-concentrated NaOH in water give sodium salts of two (different) oxoacids of chlorine, **P** and **Q**, respectively. The Cl_2 gas reacts with SO_2 gas, in presence of charcoal, to give a product **R**. **R** reacts with white phosphorus to give a compound **S**. On hydrolysis, **S** gives an oxoacid of phosphorus, **T**.

- 35. **P** and **Q**, respectively, are the sodium salts of
 - (A) hypochlorus and chloric acids
 - (C) chloric and perchloric acids

- (B) hypochlorus and chlorus acids
- (D) chloric and hypochlorus acids

- Sol. (A)
- 36. **R, S** and **T,** respectively, are
 - (A) SO₂Cl₂, PCl₅ and H₃PO₄
 - (C) SOCl₂, PCl₃ and H₃PO₂

- (B) SO₂Cl₂, PCl₃ and H₃PO₃
- (D) SOCl₂, PCl₅ and H₃PO₄

Sol. (A)

Solution for the Q. No. 35 to 36

$$\begin{split} &2\text{NaOH} + \text{Cl}_2 \longrightarrow \text{NaCl} + \text{NaClO} + \text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 5\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 5\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 5\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 5\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl}_3 + 3\text{NaCl}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl}_3 + 3\text{NaCl}_3 + 3\text{H}_2\text{O} \\ &6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 6\text{NaCl}_3 + 3\text{NaCl}_3 + 3\text{NaCl}_3$$

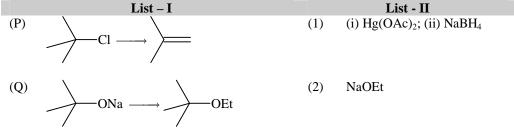
SECTION – 3: (Matching List Type)

This section contains **4 multiple choice questions. Each question has matching lists.** The codes for the lists have choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct.

37. The unbalanced chemical reactions given in List – I show missing reagent or condition (?) which are provided in List – II. Match List – I with List – II and select the correct answer using the code given below the lists:

the list		11. 141	aten Eist	1 With L	ist II und select t	110 001	reet answer using the code
			List -		List - II		
(P)	PbO ₂	$+H_2SO_2$	$\longrightarrow P$	(1)	NO		
(Q)	Na ₂ S	$_{2}O_{3} + H_{2}$	O	(2)	I_2		
(R)	N_2H_2	$\frac{?}{1} \longrightarrow N_2$	+ other	(3)	Warm		
(S)	XeF ₂	? Xe	+ other 1	(4)	Cl_2		
Codes							
	P	Q 2	R	S			
(A)	4	2	3	1			
(B)	3	2	1	4			
(C)	1	4	2	3			
(D)	3	4	2	1			
(D)							

Sol. (D


(P)
$$PbO_2 + H_2SO_4 \xrightarrow{\Delta} PbSO_4 + H_2O + \frac{1}{2}O_2$$

(Q)
$$2Na_2S_2O_3 + Cl_2 + 2H_2O \longrightarrow 2NaCl + 2NaHSO_4 + 2S$$

(R)
$$N_2H_4 + 2I_2 \longrightarrow N_2 + 4HI$$

(S)
$$XeF_2 + 2NO \longrightarrow Xe + 2NOF$$

*38. Match the chemical conversions in List – I with appropriate reagents in List – II and select the correct answer using the code given below the lists:

(3) Et-Br

(4) (i) BH₃; (ii) H₂O₂/NaOH

Codes:

- Q 3 R S 2 (A) 1 4 2 (B) 3 1 4 2 3 (C) 4 1 2 (D)
- Sol. (A)

Sol.

(A)

$$(P) \qquad \begin{array}{c} \\ \\ \end{array} Cl \xrightarrow{\text{NaOEt}}$$

$$(Q)$$
 ONa \xrightarrow{EtBr} OEt

$$(R) \qquad \overbrace{\qquad \qquad \underbrace{\qquad \qquad }_{(i) \ Hg(OAc)_2} \\ \hline \qquad \qquad \underbrace{\qquad \qquad }_{(ii) \ NaBH_4} \\ } \\ OH$$

$$(S) \qquad \underbrace{ \begin{array}{c} \text{(i) BH}_3 \text{ (ii) H}_2\text{O}_2/\text{NaOH} \\ \\ \text{OH} \end{array}}$$

39. An aqueous solution of X is added slowly to an aqueous solution of Y as shown in List – I. The variation in conductivity of these reactions in List – II. Match List – I with List – II and select the correct answer using the code given below the lists:

	51.011		TO TIDUD.							
		List	– I			List - II				
(P)	(C_2H_2)	$_{5})_{3}N+C$	H ₃ COOl	Н	(1)	Conductivity decreases and then increases				
	X		Y							
(Q)	KI(0.	1M)+ Ag	$gNO_3(0.0)$	01 M)	(2)	Conductivity decreases and then does not				
	X		Y			change much				
(R)	CH_3C	COOH+1	KOH		(3)	Conductivity increases and then does not				
	2	K	Y			change much				
(S)		H + HI			(4)	Conductivity does not change much and				
	X	Y				then increases				
Codes:	:									
	P	Q	R	S						
(A)	3	4	2	1						
(B)	4	3	2	1						
(C)	2	3	4	1						
(D)	1	4	3	2						

(P)
$$(C_2H_5)_3$$
 N+CH₃COOH $\longrightarrow (C_2H_5)_3$ NH⁺CH₃COO⁻

Initially conductivity increases due to ion formation after that it becomes practically constant because X alone can not form ions. Hence (3) is the correct match.

(Q)
$$KI(0.1 M) + AgNO_3(0.01M) \longrightarrow AgI \downarrow + KNO_3$$

Number of ions in the solution remains constant until all the AgNO₃ precipitated as AgI. Thereafter conductance increases due to increases in number of ions. Hence (4) is the correct match.

- (R) Initially conductance decreases due to the decrease in the number of OH ions thereafter it slowly increases due to the increases in number of H⁺ ions. Hence (2) is the correct match.
- (S) Initially it decreases due to decrease in H⁺ ions and then increases due to the increases in OH ions. Hence (1) is the correct match.
- 40. The standard reduction potential data at 25°C is given below:

$$E^{\circ}(Fe^{3+}, Fe^{2+}) = +0.77V;$$

$$E^{\circ}(Fe^{2+}, Fe) = -0.44V$$

$$E^{\circ}(Cu^{2+},Cu) = +0.34V;$$

$$E^{\circ}(Cu^+,Cu) = +0.52V$$

$$E^{\circ}[O_2(g) + 4H^+ + 4e^- \rightarrow 2H_2O] = +1.23V;$$

$$E^{\circ}[O_2(g) + 2H_2O + 4e^- \rightarrow 4OH^-] = +0.40V$$

$$E^{\circ}(Cr^{3+}, Cr) = -0.74V;$$

$$E^{\circ}(Cr^{2+}, Cr) = -0.91V$$

Match E^0 of the redox pair in List – I with the values given in List – II and select the correct answer using the code given below the lists:

(P)
$$E^{\circ}(Fe^{3+}, Fe)$$

$$(1)$$
 -0.18 V

(Q)
$$E^{\circ} \left(4H_2O \Longrightarrow 4H^+ + 4OH^- \right)$$

$$(2)$$
 -0.4 V

(R)
$$E^{\circ} \left(Cu^{2+} + Cu \longrightarrow 2Cu^{+} \right)$$

(S)
$$E^{\circ}\left(Cr^{3+},Cr^{2+}\right)$$

Codes:

Sol.

$$\begin{split} &(P) \quad \Delta G^{o}_{Fe^{3+}/Fe} = \Delta G^{o}_{Fe^{3+}/Fe^{2+}} + \Delta G^{o}_{Fe^{2+}/Fe} \\ &\Rightarrow -3 \times FE^{o}_{\left(Fe^{+3}/Fe\right)} = -1 \times FE^{o}_{\left(Fe^{+3}/Fe^{+2}\right)} + \left(-2 \times FE^{o}_{Fe^{+2}/Fe}\right) \\ &\Rightarrow E^{o}_{Fe^{+3}/Fe} = -0.04 \ V \end{split}$$

(Q)
$$O_2(g) + 2H_2O + 4e^- \longrightarrow 4OH$$
 $E^\circ = 0.40 \text{ V}$... (i)

$$2H_2O \longrightarrow O_2(g) + 4H^+ + 4e^- \qquad E^o = -1.23 \text{ V}$$
 .. (ii)

So
$$4H_2O \rightleftharpoons 4H^+ + 4OH$$
 ... (iii)

 E^{o} for III^{rd} reduction = 0.40 - 1.23 = -0.83 V.

$$(R) \ \Delta G^{\sigma}_{\left(Cu^{+2}/Cu\right)} = \Delta G^{\sigma}_{\left(Cu^{+2}/Cu^{+}\right)} + \Delta G^{\sigma}_{\left(Cu^{+}/Cu\right)}$$

$$-2 \times FE^{o}_{Cu^{+2}/Cu} = -1 \times FE^{o}_{Cu^{+2}/Cu^{+}} + \left(-1 \times F \times E^{o}_{Cu^{+}/Cu}\right)$$

$$\Rightarrow E^{\rm o}_{{\rm Cu}^{+2}/{\rm Cu}} = -0.18~V$$
 .

(S)
$$\Delta G^{\rm o}_{{\rm Cr}^{+3}/{\rm Cr}^{+2}} = \Delta G^{\rm o}_{{\rm Cr}^{+3}/{\rm Cr}} + \Delta G^{\rm o}_{{\rm Cr}/{\rm Cr}^{+2}}$$

$$-1 \times F \times E^{\circ}_{Cr^{*3}/Cr^{*2}} = -3 \times F \times E^{\circ}_{Cr^{*3}/Cr} + \left(-2 \times F \times E^{\circ}_{Cr/Cr^{*2}}\right)$$

$$\Rightarrow E_{Cr^{+3}/Cr^{+2}}^{o} = -0.4 \text{ V}$$
.