PART III: MATHEMATICS

SECTION 1: Single Correct Answer Type

This section contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

41. The equation of a plane passing through the line of intersection of the planes x + 2y + 3z = 2 and x - y + z = 3 and at a distance $\frac{2}{\sqrt{3}}$ from the point (3, 1, -1) is

(A)
$$5x - 11y + z = 17$$

(B)
$$\sqrt{2}x + y = 3\sqrt{2} - 1$$

(C)
$$x + y + z = \sqrt{3}$$

(D)
$$x - \sqrt{2}y = 1 - \sqrt{2}$$

ANSWER: A

- 42. Let PQR be a triangle of area Δ with a=2, $b=\frac{7}{2}$ and $c=\frac{5}{2}$, where a, b and c are the lengths of the sides of the triangle opposite to the angles at P, Q and R respectively. Then $\frac{2 \sin P - \sin 2P}{2 \sin P + \sin 2P}$ equals

 - (A) $\frac{3}{4\Lambda}$ (B) $\frac{45}{4\Lambda}$
- (C) $\left(\frac{3}{4\Delta}\right)^2$ (D) $\left(\frac{45}{4\Delta}\right)^2$

ANSWER: C

43. If \vec{a} and \vec{b} are vectors such that $|\vec{a} + \vec{b}| = \sqrt{29}$ and $\vec{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \vec{b}$, then a possible value of $(\vec{a} + \vec{b}) \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k})$ is

(A) 0

(B) 3

- (C) 4
- (D) 8

ANSWER: C

44. If P is a 3×3 matrix such that $P^T = 2P + I$, where P^T is the transpose of P and I is the 3×3

identity matrix, then there exists a column matrix $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ such that

- (A) $PX = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ (B) PX = X (C) PX = 2X (D) PX = -X

ANSWER: D

45. Let $\alpha(a)$ and $\beta(a)$ be the roots of the equation

 $(\sqrt[3]{1+a}-1)x^2 + (\sqrt{1+a}-1)x + (\sqrt[6]{1+a}-1) = 0$ where a > -1.

Then $\lim_{a\to 0^+} \alpha(a)$ and $\lim_{a\to 0^+} \beta(a)$ are

- (A) $-\frac{5}{2}$ and 1 (B) $-\frac{1}{2}$ and -1 (C) $-\frac{7}{2}$ and 2 (D) $-\frac{9}{2}$ and 3

ANSWER: B

46. Four fair dice D_1 , D_2 , D_3 and D_4 , each having six faces numbered 1, 2, 3, 4, 5 and 6, are rolled simultaneously. The probability that D_4 shows a number appearing on one of D_1 , D_2 and D_3 is

(A)
$$\frac{91}{216}$$

(B)
$$\frac{108}{216}$$

(C)
$$\frac{125}{216}$$

(B)
$$\frac{108}{216}$$
 (C) $\frac{125}{216}$ (D) $\frac{127}{216}$

ANSWER: A

47. The value of the integral

$$\int_{-\pi/2}^{\pi/2} \left(x^2 + \ln \frac{\pi + x}{\pi - x} \right) \cos x \, dx \quad \text{is}$$

(B)
$$\frac{\pi^2}{2} - 4$$

(A) 0 (B)
$$\frac{\pi^2}{2} - 4$$
 (C) $\frac{\pi^2}{2} + 4$ (D) $\frac{\pi^2}{2}$

(D)
$$\frac{\pi^2}{2}$$

ANSWER: B

48. Let a_1 , a_2 , a_3 , ... be in harmonic progression with a_1 = 5 and a_{20} = 25. The least positive integer n for which $a_n < 0$ is

(A) 22

(B) 23

(C) 24

(D) 25

ANSWER: D

MATHEMATICS

SECTION II: Paragraph Type

This section contains 6 multiple choice questions relating to three paragraphs with two questions on each paragraph. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Paragraph for Questions 49 and 50

Let a_n denote the number of all n-digit positive integers formed by the digits $0,\,1$ or both such that no consecutive digits in them are 0. Let b_n = the number of such n-digit integers ending with digit 1 and $c_n =$ the number of such n-digit integers ending with digit 0.

- 49. The value of b_6 is
 - (A) 7
- (B) 8
- (C) 9
- (D) 11

ANSWER: B

- 50. Which of the following is correct?

 - (A) $a_{17} = a_{16} + a_{15}$ (B) $c_{17} \neq c_{16} + c_{15}$ (C) $b_{17} \neq b_{16} + c_{16}$ (D) $a_{17} = c_{17} + b_{16}$

ANSWER: A

MATHEMATICS

Paragraph for Questions 51 and 52

Let $f(x) = (1-x)^2 \sin^2 x + x^2$ for all $x \in \mathbb{R}$, and let $g(x) = \int_1^x \left(\frac{2(t-1)}{t+1} - \ln t\right) f(t) dt$ for all $x \in (1, \infty)$.

- 51. Which of the following is true?
 - (A) g is increasing on $(1, \infty)$
 - (B) g is decreasing on $(1, \infty)$
 - (C) g is increasing on (1, 2) and decreasing on $(2, \infty)$
 - (D) g is decreasing on (1, 2) and increasing on (2, ∞)

ANSWER: B

52. Consider the statements:

P: There exists some $x \in \mathbb{R}$ such that $f(x) + 2x = 2(1 + x^2)$

Q: There exists some $x \in \mathbb{R}$ such that 2f(x) + 1 = 2x(1 + x)

Then

- (A) both \mathbf{P} and \mathbf{Q} are true
- (B) \mathbf{P} is true and \mathbf{Q} is false
- (C) P is false and Q is true
- (D) both ${\bf P}$ and ${\bf Q}$ are false

ANSWER: C

MATHEMATICS

Paragraph for Questions 53 and 54

A tangent PT is drawn to the circle $x^2 + y^2 = 4$ at the point $P(\sqrt{3}, 1)$. A straight line L, perpendicular to PT is a tangent to the circle $(x-3)^2 + y^2 = 1$.

53. A possible equation of L is

(A)
$$x - \sqrt{3} y = 1$$

(A)
$$x - \sqrt{3} y = 1$$
 (B) $x + \sqrt{3} y = 1$ (C) $x - \sqrt{3} y = -1$ (D) $x + \sqrt{3} y = 5$

(C)
$$x - \sqrt{3} y = -1$$

(D)
$$x + \sqrt{3} y = 5$$

ANSWER: A

54. A common tangent of the two circles is

(A)
$$x = 4$$

(B)
$$y = 2$$

(C)
$$x + \sqrt{3} y = 4$$

(C)
$$x + \sqrt{3} y = 4$$
 (D) $x + 2\sqrt{2} y = 6$

ANSWER: D

MATHEMATICS

SECTION III: Multiple Correct Answer(s) Type

This section contains 6 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which **ONE or MORE** are correct.

55. For every integer n, let a_n and b_n be real numbers. Let function $f: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} a_n + \sin \pi x, & \text{for } x \in [2n, 2n + 1] \\ b_n + \cos \pi x, & \text{for } x \in (2n - 1, 2n) \end{cases}, \text{ for all integers } n.$$

If f is continuous, then which of the following hold(s) for all n?

(A)
$$a_{n-1} - b_{n-1} = 0$$
 (B) $a_n - b_n = 1$ (C) $a_n - b_{n+1} = 1$ (D) $a_{n-1} - b_n = -1$

(B)
$$a_n - b_n = 1$$

(C)
$$a_n - b_{n+1} = 1$$

(D)
$$a_{n-1} - b_n = -1$$

ANSWER: BD

56. If
$$f(x) = \int_0^x e^{t^2} (t-2)(t-3) dt$$
 for all $x \in (0, \infty)$, then

- (A) f has a local maximum at x = 2
- (B) f is decreasing on (2, 3)
- (C) there exists some $c \in (0, \infty)$ such that f''(c) = 0
- (D) f has a local minimum at x = 3

ANSWER: ABCD

MATHEMATICS

57. If the straight lines $\frac{x-1}{2} = \frac{y+1}{k} = \frac{z}{2}$ and $\frac{x+1}{5} = \frac{y+1}{2} = \frac{z}{k}$ are coplanar, then the plane(s) containing these two lines is(are)

(A)
$$y + 2z = -1$$

(B)
$$y + z = -1$$

(C)
$$y - z = -1$$

(A)
$$y + 2z = -1$$
 (B) $y + z = -1$ (C) $y - z = -1$

ANSWER: BC

58. Let *X* and *Y* be two events such that $P(X \mid Y) = \frac{1}{2}$, $P(Y \mid X) = \frac{1}{3}$ and $P(X \cap Y) = \frac{1}{6}$. Which of the following is (are) correct?

(A)
$$P(X \cup Y) = \frac{2}{3}$$

- (B) X and Y are independent
- (C) X and Y are not independent
- (D) $P(X^{c} \cap Y) = \frac{1}{3}$

ANSWER: AB

MATHEMATICS

59. If the adjoint of a 3×3 matrix P is $\begin{bmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{bmatrix}$, then the possible value(s) of the

determinant of P is (are)

- (A) -2
- (B) -1
- (C) 1
- (D) 2

ANSWER: AD

60. Let $f: (-1, 1) \to \mathbb{IR}$ be such that $f(\cos 4\theta) = \frac{2}{2 - \sec^2 \theta}$ for $\theta \in \left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$. Then the value(s) of $f\left(\frac{1}{3}\right)$ is (are)

(A)
$$1 - \sqrt{\frac{3}{2}}$$

(B)
$$1 + \sqrt{\frac{3}{2}}$$

(C)
$$1-\sqrt{\frac{2}{3}}$$

(A)
$$1 - \sqrt{\frac{3}{2}}$$
 (B) $1 + \sqrt{\frac{3}{2}}$ (C) $1 - \sqrt{\frac{2}{3}}$

Zero Marks to all