PART III: MATHEMATICS

SECTION I: Single Correct Answer Type

This section contains 10 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

- 41. The total number of ways in which 5 balls of different colours can be distributed among 3 persons so that each person gets at least one ball is
 - (A) 75
- (B) 150
- (C) 210
- (D) 243

ANSWER: B

42. Let
$$f(x) = \begin{cases} x^2 \left| \cos \frac{\pi}{x} \right|, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, $x \in \mathbb{R}$,

then f is

- (A) differentiable both at x = 0 and at x = 2
- (B) differentiable at x = 0 but not differentiable at x = 2
- (C) not differentiable at x = 0 but differentiable at x = 2
- (D) differentiable neither at x = 0 nor at x = 2

ANSWER: B

- 43. The function $f: [0, 3] \rightarrow [1, 29]$, defined by $f(x) = 2x^3 15x^2 + 36x + 1$, is
 - (A) one-one and onto.

(B) onto but not one-one.

(C) one-one but not onto.

(D) neither one-one nor onto.

ANSWER: B

44. If
$$\lim_{x \to \infty} \left(\frac{x^2 + x + 1}{x + 1} - ax - b \right) = 4$$
, then

- (A) a = 1, b = 4 (B) a = 1, b = -4 (C) a = 2, b = -3 (D) a = 2, b = 3

ANSWER: B

MATHEMATICS

45. Let z be a complex number such that the imaginary part of z is nonzero and $a = z^2 + z + 1$ is real. Then a cannot take the value

- (A) 1
- (B) $\frac{1}{3}$ (C) $\frac{1}{2}$
- (D) $\frac{3}{4}$

ANSWER: D

46. The ellipse $E_1: \frac{x^2}{9} + \frac{y^2}{4} = 1$ is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E_2 passing through the point (0,4) circumscribes the rectangle R. The eccentricity of the ellipse E_2 is

- (A) $\frac{\sqrt{2}}{2}$
- (B) $\frac{\sqrt{3}}{2}$ (C) $\frac{1}{2}$
- (D) $\frac{3}{4}$

ANSWER: C

47. Let $P = [a_{ij}]$ be a 3×3 matrix and let $Q = [b_{ij}]$, where $b_{ij} = 2^{i+j}a_{ij}$ for $1 \le i, j \le 3$. If the determinant of P is 2, then the determinant of the matrix Q is

- (A) 2^{10}
- (B) 2^{11}
- (C) 2^{12}
- (D) 2^{13}

ANSWER: D

MATHEMATICS

48. The integral $\int \frac{\sec^2 x}{(\sec x + \tan x)^{\frac{9}{2}}} dx$ equals (for some arbitrary constant K)

(A)
$$-\frac{1}{(\sec x + \tan x)^{11/2}} \left\{ \frac{1}{11} - \frac{1}{7} (\sec x + \tan x)^2 \right\} + K$$

(B)
$$\frac{1}{(\sec x + \tan x)^{11/2}} \left\{ \frac{1}{11} - \frac{1}{7} (\sec x + \tan x)^2 \right\} + K$$

(C)
$$-\frac{1}{(\sec x + \tan x)^{11/2}} \left\{ \frac{1}{11} + \frac{1}{7} (\sec x + \tan x)^2 \right\} + K$$

(D)
$$\frac{1}{(\sec x + \tan x)^{11/2}} \left\{ \frac{1}{11} + \frac{1}{7} (\sec x + \tan x)^2 \right\} + K$$

ANSWER: C

- 49. The point P is the intersection of the straight line joining the points Q(2,3,5) and R(1,-1,4) with the plane 5x-4y-z=1. If S is the foot of the perpendicular drawn from the point T(2,1,4) to QR, then the length of the line segment PS is
 - (A) $\frac{1}{\sqrt{2}}$
- (B) $\sqrt{2}$
- (C) 2

(D) $2\sqrt{2}$

ANSWER: A

50. The locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line 4x - 5y = 20 to the circle $x^2 + y^2 = 9$ is

(A) $20(x^2 + y^2) - 36x + 45y = 0$

(B) $20(x^2 + y^2) + 36x - 45y = 0$

(C) $36(x^2 + y^2) - 20x + 45y = 0$

(D) $36(x^2 + y^2) + 20x - 45y = 0$

ANSWER: A

MATHEMATICS

SECTION II: Multiple Correct Answer(s) Type

This section contains 5 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct.

51. Let θ , $\varphi \in [0, 2\pi]$ be such that

$$2\cos\theta (1-\sin\varphi) = \sin^2\theta \left(\tan\frac{\theta}{2} + \cot\frac{\theta}{2}\right)\cos\varphi - 1,$$

$$\tan (2\pi - \theta) > 0 \text{ and } -1 < \sin \theta < -\frac{\sqrt{3}}{2}.$$

Then φ cannot satisfy

(A)
$$0 < \varphi < \frac{\pi}{2}$$

(B)
$$\frac{\pi}{2} < \varphi < \frac{4\pi}{3}$$

(A)
$$0 < \varphi < \frac{\pi}{2}$$
 (B) $\frac{\pi}{2} < \varphi < \frac{4\pi}{3}$ (C) $\frac{4\pi}{3} < \varphi < \frac{3\pi}{2}$ (D) $\frac{3\pi}{2} < \varphi < 2\pi$

(D)
$$\frac{3\pi}{2} < \varphi < 2\pi$$

ANSWER: ACD

52. Let S be the area of the region enclosed by $y = e^{-x^2}$, y = 0, x = 0, and x = 1. Then

(A)
$$S \ge \frac{1}{e}$$

(B)
$$S \ge 1 - \frac{1}{e}$$

(C)
$$S \le \frac{1}{4} \left(1 + \frac{1}{\sqrt{e}} \right)$$

(D)
$$S \le \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{e}} \left(1 - \frac{1}{\sqrt{2}} \right)$$

ANSWER: ABD

MATHEMATICS

53. A ship is fitted with three engines $E_{\rm I}$, $E_{\rm 2}$ and $E_{\rm 3}$. The engines function independently of each other with respective probabilities $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{4}$. For the ship to be operational at least two of its engines must function. Let X denote the event that the ship is operational and let X_1 , X_2 and X_3 denote respectively the events that the engines E_1 , E_2 and E_3 are functioning. Which of the following is (are) true?

(A)
$$P[X_1^c | X] = \frac{3}{16}$$

(A) $P[X_1^c \mid X] = \frac{3}{16}$ (B) $P[Exactly two engines of the ship are functioning <math>\mid X] = \frac{7}{8}$

(C)
$$P[X | X_2] = \frac{5}{16}$$
 (D) $P[X | X_1] = \frac{7}{16}$

(D)
$$P[X \mid X_1] = \frac{7}{16}$$

ANSWER: BD

54. Tangents are drawn to the hyperbola $\frac{x^2}{\alpha} - \frac{y^2}{4} = 1$, parallel to the straight line 2x - y = 1. The points of contact of the tangents on the hyperbola are

(A)
$$\left(\frac{9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

(B)
$$\left(-\frac{9}{2\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$

(C)
$$(3\sqrt{3}, -2\sqrt{2})$$

(D)
$$\left(-3\sqrt{3}, 2\sqrt{2}\right)$$

ANSWER: AB

55. If y(x) satisfies the differential equation $y' - y \tan x = 2x \sec x$ and y(0) = 0, then

$$(A) \quad y\left(\frac{\pi}{4}\right) = \frac{\pi^2}{8\sqrt{2}}$$

(B)
$$y'\left(\frac{\pi}{4}\right) = \frac{\pi^2}{18}$$

$$(C) \quad y\left(\frac{\pi}{3}\right) = \frac{\pi^2}{9}$$

(D)
$$y'\left(\frac{\pi}{3}\right) = \frac{4\pi}{3} + \frac{2\pi^2}{3\sqrt{3}}$$

ANSWER: AD

MATHEMATICS

SECTION III: Integer Answer Type

This section contains **5 questions**. The answer to each question is a **single digit integer**, ranging from 0 to 9 (both inclusive).

56. Let $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = |x| + |x^2 - 1|$. The total number of points at which f attains either a local maximum or a local minimum is

ANSWER: 5

57. The value of
$$6 + \log_{\frac{3}{2}} \left(\frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \cdots}}} \right)$$
 is

ANSWER: 4

58. Let p(x) be a real polynomial of least degree which has a local maximum at x = 1 and a local minimum at x = 3. If p(1) = 6 and p(3) = 2, then p'(0) is

ANSWER:9

59. If
$$\vec{a}$$
, \vec{b} and \vec{c} are unit vectors satisfying $\left| \vec{a} - \vec{b} \right|^2 + \left| \vec{b} - \vec{c} \right|^2 + \left| \vec{c} - \vec{a} \right|^2 = 9$, then $\left| 2\vec{a} + 5\vec{b} + 5\vec{c} \right|$ is

ANSWER: 3

60. Let S be the focus of the parabola $y^2 = 8x$ and let PQ be the common chord of the circle $x^2 + y^2 - 2x - 4y = 0$ and the given parabola. The area of the triangle PQS is

ANSWER: 4