QUESTIONS \& SOLUTIONS OF
 AIPMT 2012 (MAINS)

Date : 13-05-2012

IMPORTANT INSTRUCTIONS

1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on Side-1 and Side-2 carefully with blue/black ball point pen only.
2. The test is of $\mathbf{3}$ hours duration and Test Booklet contains 120 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 480.
3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
5. On completion of the test, the candidate must havdover the Answer Sheet to the invigilator in the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
6. The CODE for this Booklet is A. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklets and the Answer Sheets.
7. The Candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your roll no. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
8. Use of white fluid for correction is NOT permissible on the Answer Sheet.

Name of the Candidate (in Capitals): \qquad

Roll Number: in figures \qquad

Centre of Examination (in Capitals) : \qquad

Candidate's Signature: \qquad Invigilator's Signature: \qquad

Fascimile signature stamp of
Centre Superintendent :

PART - B (CHEMISTRY)

31. Given that the equilibrium constant for the reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ \qquad $2 \mathrm{SO}_{3}(\mathrm{~g})$ has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?
$\mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
(1) 1.8×10^{-3}
(2) 3.6×10^{-3}
(3) 6.0×10^{-2}
(4) 1.3×10^{-5}

Ans. (3)
Sol. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3} \rightleftharpoons \mathrm{~K}=278$
$\mathrm{SO}_{3} \rightleftharpoons \mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \quad \mathrm{k}^{\prime}=\frac{1}{\mathrm{~K}}$

$$
\begin{aligned}
& =\sqrt{\frac{1}{278}} \\
& =\sqrt{35.97 \times 10^{-4}} \\
& =6 \times 10^{-2}
\end{aligned}
$$

32. Structure of a mixed oxide is cubic close - packed (c.c.p). The cubic unit cell of mixed oxide is composed of oxide ions. One fourth of the tetrahedral voids are occupied by divalent metal A and the octahedral voids are occupied by a monovalent metal B . The formula of the oxide is :
(1) ABO_{2}
(2) $\mathrm{A}_{2} \mathrm{BO}_{2}$
(3) $\mathrm{A}_{2} \mathrm{~B}_{3} \mathrm{O}_{4}$
(4) $\mathrm{AB}_{2} \mathrm{O}_{2}$

Ans. (4)
Sol. $A^{2+}=\frac{1}{4} \quad \times 8=2$
$\mathrm{B}^{+}=4 \times 1=4$
$\mathrm{A}_{2} \mathrm{~B}_{4} \mathrm{O}_{4}$
$\mathrm{AB}_{2} \mathrm{O}_{2}$
$\mathrm{O}^{\alpha-}=8 \times \frac{1}{8} \quad+6 \times \frac{1}{2}=4^{-}$
33. Given the reaction between 2 gases represented by A_{2} and B_{2} to give the compound $A B(g)$.

$$
\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{~g})
$$

At equilibrium, the concentration
of $A_{2}=3.0 \times 10^{-3} \mathrm{M}$
of $B_{2}=4.2 \times 10^{-3} \mathrm{M}$
of $A B=2.8 \times 10^{-3} \mathrm{M}$.
If the reaction takes place in a sealed vessel at $527^{\circ} \mathrm{C}$, then the value of K_{C} will be :
(1) 2.0
(2) 1.9
(3) 0.62
(4) 4.5

Ans. (3)
Sol. $\mathrm{A}_{2}+\mathrm{B}_{2} \rightleftharpoons 2 \mathrm{C}=2 \mathrm{~K}$
$k_{c}=\frac{\left(2.8 \times 10^{-3}\right)^{2}}{3 \times 10^{-3} \times 4.2 \times 10-3}=\frac{(2.8)^{2}}{3 \times 4.2}=0.62$
34. Activation energy (E_{a}) and rate constants (k_{1} and k_{2}) of a chemical reaction at two different temperatures $\left(T_{1}\right.$ and $\left.T_{2}\right)$ are related by :

$$
\begin{aligned}
& \text { (1) } \ln \quad \frac{K_{2}}{K}=-\quad \frac{E_{a}}{R}\left(\begin{array}{ll}
1 \\
1 & -\frac{1}{T} \\
1 & 2
\end{array}\right) \\
& \text { (2) ln } \quad \frac{K_{2}}{K}=-\frac{E_{a}}{R}\left(\begin{array}{c}
1 \\
1 \\
2
\end{array}\right) \\
& \frac{K_{2}}{1}=-\frac{E_{a}}{\left(\frac{1}{2}+\frac{1}{1}\right)} \\
& \text { (90n } \quad \frac{K_{2}}{1} \quad \underline{E_{a}}\left(\frac{1}{1}-\frac{1}{2}\right)
\end{aligned}
$$

Ans. (2 or 4)
Sol. $\left.\begin{array}{rl}\ln \frac{k_{2}}{k_{1}} & =\frac{E_{a}}{R}\left(\frac{1}{-}-\frac{1}{l}\right) \\ 2\end{array}\right)$
35. During change of O_{2} to O_{2}^{-}ion, the electron adds on which one of the following orbitals ?
(1) π^{*} orbital
(2) π orbital
(3) σ^{*} orbital
(4) σ orbital

Ans. (1)
Sol. $\quad \underbrace{\sigma 1 s^{2} \sigma^{*} 1 s^{2} \sigma 2 s^{2} \sigma^{*} 2 s^{2} \sigma 2 p_{2}{ }^{2} \begin{array}{lll}\pi 2 p_{x}{ }^{2} & \pi^{*} 2 p_{x}{ }^{2} \\ \pi 2 p_{y}{ }^{2} & \pi^{*} 2 p_{y}{ }^{1}\end{array} \sigma 2 p_{z}{ }^{0}}$

$$
\text { For } \mathrm{O}_{2}^{-}
$$

36. Standard reduction potentials of the half reactions are given below :
$\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~F}^{-}(\mathrm{aq}) ; \quad \mathrm{E}^{\circ}=+2.85 \mathrm{~V}$
$\mathrm{Cl}_{2}^{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq}) ; \mathrm{E}^{\circ}=+1.36 \mathrm{~V}$
$\mathrm{Br}_{2}^{2}(\mathrm{I})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq}) ; \quad \mathrm{E}=+1.06 \mathrm{~V}$
$\mathrm{I}_{2}^{2}(\mathrm{~s})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq}) ; \quad \mathrm{E}^{\circ}=+0.53 \mathrm{~V}$
The strongest oxidising and reducing agents respectively are :
(1) F_{2} and I^{-}
(2) Br_{2} and Cl^{-}
(3) Cl_{2} and Br^{-}
(4) Cl_{2} and I_{2}

Ans. (1)
Sol. E° more positive, reducing agent will be greater.
37. A certain gas takes three times as long to effuse out as helium. Its molecular mass will be :
(1) $27 u$
(2) 36 u
(3) $64 u$
(4) $9 u$

Ans. (2)
Sol. $\quad r \propto \sqrt{\frac{1}{M}}$
$\frac{r_{2}}{r_{1}}=\sqrt{\frac{M_{2}}{M_{1}}}$
$\frac{\frac{V_{g}}{3 t}}{\frac{\mathrm{He}^{\mathrm{He}}}{\mathrm{t}}}=\sqrt{\frac{4}{M}}$
$9^{1}=M^{4}$
$\mathrm{M}=36 \mathrm{~g} / \mathrm{mole}$
38. The orbital angular momentum of a p-electron is given as:
(1) $\frac{h}{\sqrt{2} \pi}$
(2) $\sqrt{3} \frac{h}{2 \pi}$
(3) $\sqrt{\frac{3}{2}} \frac{\mathrm{~h}}{\pi}$
(4) $\sqrt{6} \cdot \frac{\mathrm{~h}}{2 \pi}$

Ans. (1)
Sol. Orbital angular momentum $=\frac{h}{2 \pi} \sqrt{(+1)}$
$=1$
So $=\frac{h}{2 \pi} \quad \sqrt{2}$
$=\frac{\mathrm{h}}{\sqrt{2 \pi}}$
39. Vapour pressure of chloroform $\left(\mathrm{CHCl}_{3}\right)$ and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at $25^{\circ} \mathrm{C}$ are 200 mm Hg and 41.5 mm Hg respectively. Vapour pressure of the solution obtained by mixing 25.5 g of CHCl_{3} and $40 \mathrm{~g} \mathrm{of} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at the same temperature will be : (Molecular mass of $\mathrm{CHCl}_{3}=119.5 \mathrm{u}$ and molecular mass of $\mathrm{CH}_{2} \mathrm{Cl}_{2}=85 \mathrm{u}$).
(1) 173.9 mm Hg
(2) 615.0 mm Hg
(3) 347.9 mm Hg
(4) 285.5 mm Hg

Ans. Bonus

$\mathrm{n}_{\mathrm{CH}_{2 \mathrm{Cl}}}=\frac{40}{85}=0.47$
$P_{T}=P_{A B}^{\circ} X_{A B}+P_{B}^{\circ} X_{B}$

$$
\begin{array}{ll}
0.213 & 0.47
\end{array}
$$

$=200 \times 0.683+41.5 \times 8.683$
$=62.37+28.55$
$=90.92$
40. Molar conductivities $\left(\Lambda^{\circ}{ }_{\mathrm{m}}\right)$ at infinite dilution of $\mathrm{NaCl}, \mathrm{HCl}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ are 126.4, 425.9 and 91.0 S $\mathrm{cm}^{2} \mathrm{~mol}^{-1}$ respectlvely. $\Lambda{ }^{\circ} \mathrm{m}$ for $\mathrm{CH}_{3} \mathrm{COOH}$ will be :
(1) $425.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(2) $180.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(3) $290.8 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(4) $390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Ans. (4)
Sol. $\lambda_{0}=\lambda 0 \quad+\lambda_{0}-\lambda_{0}$
M CH3COONa HCl NaCl
$=91+425.9-126.4$
$=390.5$
41. For real gases van der Waals equation is written as

$$
\left({ }^{p+} \frac{\mathrm{an}^{2}}{V^{2}}\right)(V-n b)=n R T
$$

where 'a'and 'b'are van der Waals constants. Two sets of gases are :
(I) $\mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{H}_{2}$ and He
(II) $\mathrm{CH}_{4}, \mathrm{O}_{2}$ and H_{2}

The gases given in set-I in increasing order of 'b'and gases given in set-II in decreasing order of 'a', are arranged below. Select the correct order from the following :
(1) (I) $\mathrm{He}<\mathrm{H}_{2}<\mathrm{CO}_{2}<\mathrm{O}_{2}$ (II) $\mathrm{CH}_{4}>\mathrm{H}_{2}>\mathrm{O}_{2}$
(2) (I) $\mathrm{O}_{2}<\mathrm{He}<\mathrm{H}_{2}<\mathrm{CO}_{2}$ (II) $\mathrm{H}_{2}>\mathrm{O}_{2}>\mathrm{CH}_{4}$
(3) (I) $\mathrm{H}_{2}<\mathrm{He}<\mathrm{O}_{2}<\mathrm{CO}_{2}$ (II) $\mathrm{CH}_{4}>\mathrm{O}_{2}>\mathrm{H}_{2}$
(4) (I) $\mathrm{H}_{2}<\mathrm{O}_{2}<\mathrm{He}<\mathrm{CO}_{2}$ (II) $\mathrm{O}_{2}>\mathrm{CH}_{4}>\mathrm{H}_{2}$

Ans. (4)
Sol. Molar mass \uparrow, 'a'increases size
of molecule \uparrow, 'b'increase

	b (L/mol)		$\mathrm{a}\left(\mathrm{bar} . \mathrm{L}^{2} / \mathrm{mol}^{2}\right)$
H_{2}	$\rightarrow 0.02661$	CH_{4}	$\rightarrow 2.283$
He	$\rightarrow 0.0237$	${ }^{2}$	$\rightarrow 1.378$
2	$\rightarrow 0.03183$	2	$\rightarrow 0.2476$
CO_{2}	$\rightarrow 0.04267$		

42. Equal volumes of two monoatomic gases, A and B, at same temperature and pressure are mixed. The ratio of specific heats $\left(\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}\right)$ of the mixture will be :
(1) 0.83
(2) 1.50
(3) 3.3
(4) 1.67

Ans. (4)
Sol. $\quad \frac{C_{P}}{C_{V}}=\frac{5 / 2 R}{3 / R}=-\frac{5}{3}=1.67$
43. Red precipitate is obtained when ethanol solution of dimethylglyoxime is added to ammoniacal $\mathrm{Ni}(\mathrm{II})$. Which of the following statements is not true ?
(1) Red complex has a square planar geometry.
(2) Complex has symmetrical H-bonding
(3) Red complex has a tetrahedral geometry.
(4) Dimethylglyoxime functions as bidentate ligand.

Ans. (3)
Sol. $\mathrm{NiCl}_{2}+\mathrm{DMG} \longrightarrow\left[\mathrm{Ni}(\mathrm{dmg})_{2}\right] ;$ It is not tetrahydral square planer
44. Low spin complex of d^{6}-cation in an octahedral field will have the following energy :
(1) $\frac{-12}{5} \Delta_{0}+P$
(2) $\frac{-12}{5} \Delta_{0}+3 P$
(3) $\frac{-2}{5} \Delta_{0}+2 P$
(4) $\frac{-2}{5^{\Delta}} 0_{0}+P$
($\Delta_{0}=$ Crystal Field Splitting Energy in an octahedral field, $P=$ Electron pairing energy)
Ans. (2)
Sol. $\quad d^{6}-t_{2 a}{ }_{\text {eg }}^{2,2,2}$ (in low spin)
C.F.S.E. $=-0.4 \times 6 \Delta_{0}+3 P$
$=-\frac{12}{5} \Delta_{0}+3 P$
45. Which one of the following does not correctly represent the correct order of the property indicated against it?
(1) $\mathrm{Ti}<\mathrm{V}<\mathrm{Cr}<\mathrm{Mn}$: increasing number of oxidation states
(2) $\mathrm{Ti}^{3+}<\mathrm{V}^{3+}<\mathrm{Cr}^{3+}<\mathrm{Mn}^{3+}$: increasing magnetic moment
(3) $\mathrm{Ti}<\mathrm{V}<\mathrm{Cr}<\mathrm{Mn}$: increasing melting points
(4) $\mathrm{Ti}<\mathrm{V}<\mathrm{Mn}<\mathrm{Cr}$: increasing $2^{\text {nd }}$ ionization enthalpy

Ans. (3)
Sol. Melting point of Mn and Zn has low M.P. than their adjacent element due to stable configuration.
46. Four successive members of the first series of the transition metals are listed below. For which one of them the standard potential $\left(\mathrm{E}_{\mathrm{M}}{ }^{0} 2+/ \mathrm{M}\right)$ value has a positive sign ?
(1) $\mathrm{Co}(Z=27)$
(2) $\mathrm{Ni}(Z=28)$
(3) $\mathrm{Cu}(\mathrm{Z}=29)$
(4) $\mathrm{Fe}(\mathrm{Z}=26)$

Ans. (3)
Sol. $\quad \mathrm{E}_{\mathrm{Cu}^{0} / \mathrm{Cu}}^{+2}=0.34$ volt, other has -ve $\mathrm{E}_{\text {R.P. }}^{0}$
47. In the replacement reaction

The reaction will be most favourable if M happens to be :
(1) Na
(2) K
(3) Rb
(4) Li

Ans. (3)
Sol. Tertiary halide can show ionic reaction with MF so, MF should be most ionic for reaction to proceed forward. Hence 'M'should be 'Rb'.
48. In which of the following arrangements the given sequence is not strictly according to the property indicated against it?
(1) $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$: increasing acidic strength
(2) $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$: increasing pK_{a} values
(3) $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$: increasing acidic character
(4) $\mathrm{CO}_{2}<\mathrm{SiO}_{2}<\mathrm{SnO}_{2}<\mathrm{PbO}_{2}$: increasing oxidising power

Ans. (2)
Sol. If acidic nature is high, Ka is high and PK_{a} is low
$\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te} \quad$ Acidic nature (Order of K_{a})
$\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te} \quad$ Order of PK_{a}
49. Four diatomic species are listed below. Identify the correct order in which the bond order is increasing in them:
(1) $\mathrm{NO}<\mathrm{O}_{2}<\mathrm{C}_{2}<\mathrm{He}_{2}$
(2) $\mathrm{O}_{2}<\mathrm{NO}<\mathrm{C}_{2}<\mathrm{He}_{2}$
(3) $\mathrm{C}_{2}<\mathrm{He}_{2}<\mathrm{O}_{2}<\mathrm{NO}$
(4) $\mathrm{He}_{2}<\mathrm{O}_{2}<\mathrm{NO}<\mathrm{C}_{2}$

Ans. (4)
Sol. He^{+}B.O. $=0.5$
$\mathrm{O}_{2}{ }^{2} \quad$ B.O. $=1.5$
NO B.O. $=2.5$
$\mathrm{C}_{2}^{2-} \quad$ B.O. $=3.0$
50. The catalytic activity of transition metals and their compounds is ascribed mainly to :
(1) their magnetic behaviour
(2) their unfilled d-orbitals
(3) their ability to adopt variable oxidation state
(4) their chemical reactivity

Ans. (3)
Sol. Has variable oxidation state
e.g. $\mathrm{V}_{2} \mathrm{O}_{5}$ catalyst in contact process.
51. Which of the following exhibit only +3 oxidation state ?
(1) U
(2) Th
(3) Ac
(4) Pa

Ans. (3)
Sol. Only Ac form Ac^{+3}
52. The Gibbs'energy for the decomposition of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is as follows :

$$
\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \longrightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2} ; \Delta \mathrm{G}=+960 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The potential difference needed for the electrolytic reduction of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ at $500^{\circ} \mathrm{C}$ is at least :
(1) 4.5 V
(2) 3.0 V
(3) 2.5 V
(4) 5.0 V

Ans. (3)
Sol. $\Delta G=-n F E^{\circ} \quad n=\frac{2}{3} \times 2 \times 3$
$960 \times 10^{3}=-4 \times 96.500 \times \mathrm{E}^{\circ}=4$ for reaction
$\mathrm{E}^{\circ}=-2.5$ volt
So, it needed 2.5 volt for reduction
53. Chloroamphenicol is an :
(1) antifertility drug
(2) antihistaminic
(3) antiseptic and disinfectant
(4) antibiotic-broad spectrum

Ans. (4)
Sol. Chloroamphenicol is a broad spectrum antibiotic.
54. Consider the following reaction :

The product ' A 'is :
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$
(4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$

Ans. (1)

Sol.

It is Rosenmund reaction.
55. Which one of the following sets forms the biodegradable polymer?
(1) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CN}$ and $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(2) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}$ and $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{COOH}$
(3)

(4)

Ans. (2)
Sol. Biodegradable polymer is Nylon-2-Nylon-6 which is copolymer of glycine $\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}\right)$ and amino caproic acid $\left(\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{COOH}\right)$.
56. An organic compound $\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}\right)(A)$, when treated with nitrous acid, gave an alcohol and N_{2} gas was evolved. (A) on warming with CHCl_{3} and caustic potash gave (C) which on reduction gave isopropylmethylamine. Predict the structure of (A).

(2) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{3}$
(3)

(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{NH}_{2}$

Ans.(1)

Sol.

57. Which of the following reagents will be able to distinguish between 1-butyne and 2-butyne?
(1) NaNH_{2}
(2) HCl
(3) O_{2}
(4) Br_{2}

Ans. (1)
Sol. 1-Butyne and 2-butyne are distinguish by NaNH_{2} because 1-Butyne react with NaNH_{2} due to active hydrogen.
58. Consider the reaction :
$\mathrm{RCHO}+\mathrm{NH}_{2} \mathrm{NH}_{2} \rightarrow \mathrm{RCH}=\mathrm{N}-\mathrm{NH}_{2}$
What sort of reaction is it ?
(1) Electrophilic addition - elimination reaction
(2) Free radical addition - elimination reaction
(3) Electrophilic substitution - elimination reaction
(4) Nucleophilic addition - elimination reaction

Ans. (4)
Sol. $\mathrm{R}-\mathrm{CH}=\mathrm{O}+\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2} \longrightarrow \mathrm{R}-\mathrm{CH}=\mathrm{N}-\mathrm{NH}_{2}$
It is a Nucleophilic addition-elimination reaction.
59. Which of the following compounds will give a yellow precipitate with iodine and alkali ?
(1) Acetophenone
(2) Methyl acetate
(3) Acetamide
(4) 2-Hydroxypropane

Ans. (1, 4)

Sol. It is lodoform reaction. Acetophenone $\left[\mathrm{CH}_{3}-\mathrm{Cl}-\mathrm{O}\right\rangle$ and 2-Hydroxypropane $\left[\mathrm{CH}_{3}-\mathrm{CH}_{-} \mathrm{CH}_{3}\right]$ both give a yellow precipitate of CHI_{3} (iodoform) with iodine \& alkali.
60. Which of the following compounds can be used as antifreeze in automobile radiators ?
(1) Methyl alcohol
(2) Glycol
(3) Nitrophenol
(4) Ethyl alcohol

Ans. (2)
Sol. Glycol is used as an antifreeze in automobiles.

