AIPMT - 2009 - CHEMISTRY

Question Paper with Solution

151. The state of hybridization of C_2 , C_3 , C_5 and C_6 of the hydrocarbon,

$$\begin{array}{c|cccc} CH_3 & CH_3 \\ | & | \\ CH_3 - C - CH = CH - CH - C \equiv CH \\ 7 & 6 | & 5 & 4 & 3 & 2 & 1 \\ CH_3 & & & & \end{array}$$

is in the following sequence:

(1)
$$sp^3$$
, sp^2 , sp^2 and sp

(2) sp,
$$sp^2$$
, sp^2 and sp^3

(3) sp, sp
2
, sp 3 and sp 2

(4) sp, sp
3
, sp 2 and sp 3

Sol:
$$sp, sp^3, sp^2, sp^3$$

∴ Correct choice : (4)

152. Oxidation numbers of P in PO_4^{3-} , of S in SO_4^{2-} and that of Cr in $Cr_2O_7^{2-}$ are respectively:

$$(1) + 3$$
, $+ 6$ and $+ 5$

$$(2) + 5$$
, $+ 3$ and $+ 6$

$$(3) - 3$$
, $+ 6$ and $+ 6$

$$(4) + 5$$
, $+ 6$ and $+ 6$

Sol:
$$PO_4^{3-}$$
 (P = + 5)

$$SO_4^{2-}$$
 (S = + 6)

$$Cr_2O_7^{2-}$$
 ($Cr = + 6$)

∴ Correct choice : (4)

153. Lithium metal crystallises in a body centred cubic crystal. If the length of the side of the unit cell of lithium is 351 pm, the atomic radius of the lithium will be:

Sol: a $\sqrt{3} = 4 \text{ r}$

$$r = \frac{a\sqrt{3}}{4} = \frac{351 \times 1.732}{4} = 151.98 \text{ pm}$$

∴ Correct choice : (1)

154.	Which of the foreaction?	llowing reactions	is an example of n	ucleophilic susbtitution		
	(1) $2 RX + 2 Na \longrightarrow R - R + 2 NaX$ (2) $RX + H_2 \longrightarrow RH + HX$					
	$(3) RX + Mg \longrightarrow RMgX$					
	(4) RX + KOH —	\rightarrow ROH + KX				
Sol:	X is replaced by	OH ⁻				
				∴ Correct choice : (4)		
155.	55. In the case of alkali metals, the covalent character decreases in the order:					
	(1) MF > MCl > N	MBr > MI	(2) MF > MCl > MI	> MBr		
	(3) MI > MBr > N	ICl > MF	(4) MCl > MI > MB	r > MF		
Sol:	MI > MBr > MCl	> MF. As the size of	of the anion decreases	covalency decreases		
				∴ Correct choice : (3)		
156.	. Which one of the elements with the following outer orbital configurations may exhibit the largest number of oxidation states?			oital configurations may		
	(1) $3d^54s^1$	(2) $3d^54s^2$	(3) $3d^24s^2$	(4) $3d^34s^2$		
Sol:	The configuration $3d^5 4s^2$ can have various oxidation states upto + 7.					
				∴ Correct choice : (2)		
157.	. The stability of + 1 oxidation state increases in the sequence:			ace:		
	(1) Tl < In < Ga <	A1	(2) In < Tl < Ga < A	Al		
	(3) Ga < In < Al <	: T1	(4) Al < Ga < In < 7	Γ1		
Sol:	The order is due to 'inert pair effect'					
				∴ Correct choice : (4)		
158.	Given:					
	(i) $Cu^{2+} + 2e^{-} \longrightarrow Cu$, $E^{0} = 0.337 \text{ V}$					
	(ii) $Cu^{2+} + e^{-} \longrightarrow Cu^{+}, E^{0} = 0.153 \text{ V}$					
	Electrode potential, E^0 for the reaction, $Cu^+ + e^- \longrightarrow Cu$, will be:					
	Electrode potentia	ai, E for the reacti	$011, Cu + e \longrightarrow Cu,$	will be:		
	(1) 0.90 V	(2) 0.30 V	(3) 0.38 V	(4) 0.52 V		

Sol:
$$Cu^{2+} + 2e^{-} \longrightarrow Cu$$
; $\Delta G^{0} = -nE^{0}$ $F = -2 \times F \times 0.337 = -0.674$ F

$$Cu^{+} \longrightarrow Cu^{2+} + e^{-}$$
; $\Delta G^{0} = -nE^{0}$ F = $-1 \times F \times -0.153 = 0.153$ F

$$Cu^+ + e^- \longrightarrow Cu$$
; $\Delta G^0 = -0.521 \text{ F} = -nE^0F$; $n = 1, E^0 = +0.52 \text{ V}$

∴ Correct choice : (4)

159. For the reaction,
$$N_2 + 3H_2 \longrightarrow 2NH_3$$
, if $\frac{d \left[NH_3 \right]}{dt} = 2 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$, the value of $\frac{-d \left[H_2 \right]}{dt}$ would be:

(1)
$$4 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$$

(2)
$$6 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$$

(1)
$$4 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$$

(3) $1 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$

(4)
$$3 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$$

Sol:
$$-\frac{1}{3} \frac{d [H_2]}{dt} = \frac{1}{2} \frac{d [NH_3]}{dt}$$
$$-\frac{d [H_2]}{dt} = \frac{3}{2} \frac{d [NH_3]}{dt} = \frac{3}{2} \times 2 \times 10^{-4} = 3 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$$

:. Correct choice: (4)

160. Consider the following reaction,

$$\operatorname{ethanol} \xrightarrow{\operatorname{PBr}_3} \operatorname{X} \xrightarrow{\operatorname{alc.} \operatorname{KOH}} \operatorname{Y} \xrightarrow{(i) \operatorname{H}_2 \operatorname{SO}_4 \operatorname{room temperature}} \xrightarrow{} \operatorname{Z};$$

the product Z is:

(1)
$$CH_3CH_2 - O - CH_2 - CH_3$$
 (2) $CH_3 - CH_2 - O - SO_3H_3$

(2)
$$CH_3 - CH_2 - O - SO_3H$$

(4)
$$CH_2 = CH_2$$

:. Correct choice: (3)

161. The energy absorbed by each molecule (A $_2$) of a substance is 4.4×10^{-19} J and bond energy per molecule is 4.0×10^{-19} J. The kinetic energy of the molecule per atom will be:

(1)
$$2.2 \times 10^{-19}$$
 J

(2)
$$2.0 \times 10^{-19} \text{ J}$$

(3)
$$4.0 \times 10^{-20}$$
 J

(4)
$$2.0 \times 10^{-20}$$
 J

Sol: K.E per atom =
$$\frac{\left(4.4 \times 10^{-19}\right) - \left(4.0 \times 10^{-19}\right)}{2} = \frac{0.4 \times 10^{-19}}{2} = 2.0 \times 10^{-20}$$

∴ Correct choice : (4)

162. Amongst the elements with following electronic configurations, which one of them may have the highest ionization energy?

(1) Ne
$$[3s^23p^2]$$

(2) Ar
$$[3d^{10}4s^24p^3]$$

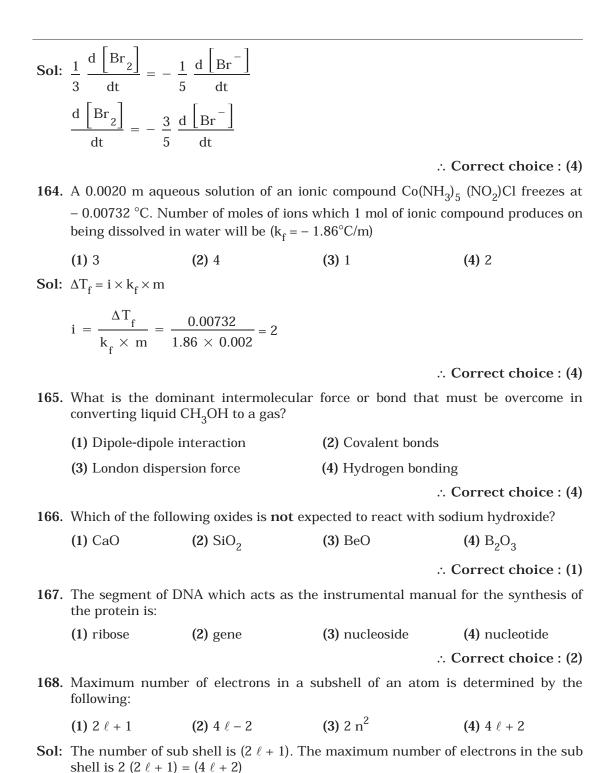
(3) Ne
$$[3s^23p^1]$$

(4) Ne
$$[3s^23p^3]$$

Sol: Smallest atom having half filled p-sub shell has highest I_0 value

∴ Correct choice : (4)

163. In the reaction


 ${\rm BrO}_3^-$ (aq) + 5 ${\rm Br}_{(aq)}^-$ + 6H $^+$ \rightarrow 3 ${\rm Br}_2(1)$ + 3 ${\rm H_2O}_{(1)}$. The rate of appearance of bromine (Br₂) is related to rate of disappearance of bromide ions as following:

(1)
$$\frac{d \left(Br_2\right)}{dt} = -\frac{5}{3} \frac{d \left(Br^-\right)}{dt}$$

(2)
$$\frac{d \left(Br_2\right)}{dt} = \frac{5}{3} \frac{d \left(Br^-\right)}{dt}$$

(3)
$$\frac{d \left(Br_2\right)}{dt} = \frac{3}{5} \frac{d \left(Br^-\right)}{dt}$$

(4)
$$\frac{d \left(Br_2\right)}{dt} = -\frac{3}{5} \frac{d \left(Br^-\right)}{dt}$$

∴ Correct choice : (4)

- 169. Half life period of a first-order reaction is 1386 seconds. The specific rate constant of the reaction is:
 - (1) $0.5 \times 10^{-2} \text{ s}^{-1}$

(2) $0.5 \times 10^{-3} \text{ s}^{-1}$

(3) $5.0 \times 10^{-2} \text{ s}^{-1}$

- **(4)** $5.0 \times 10^{-3} \text{ s}^{-1}$
- **Sol:** $t_{1/2} = \frac{0.693}{k}$; $k = \frac{0.693}{1386} = 0.5 \times 10^{-3} \text{ s}^{-1}$

- ∴ Correct choice : (2)
- **170.** Which one of the following is employed as a tranquilizer?
 - (1) Naproxen

(2) Tetracycline

(3) Chlorpheninamine

- (4) Equanil
- ∴ Correct choice : (4)
- 171. ${\rm Al_2O_3}$ is reduced by electrolysis at low potentials and high currents. If 4.0×10^4 amperes of current is passed through molten $\mathrm{Al_2O_3}$ for 6 hours, what mass of aluminium is produced? (Assume 100% current efficiency. At. mass of Al = 27 g mol⁻¹)
 - (1) 8.1×10^4 g

- (2) 2.4×10^5 g (3) 1.3×10^4 g (4) 9.0×10^3 g
- **Sol:** Total current = $4.0 \times 10^4 \times 6 \times 60 \times 60$ C
 - 96500 C liberates 9 g of Al (1 g. eq)

 $(4\times10^4\times6\times60\times60)$ C liberates 8.1×10^4 g of Al

- ∴ Correct choice : (1)
- **172.** Benzene reacts with CH₃Cl in the presence of anhydrous AlCl₃ to form:
 - (1) Chlorobenzene (2) Benzylchloride (3) Xylene
- (4) Toluene

Sol:
$$\bigcirc$$
 + CH₃Cl $\xrightarrow{\text{Anhyd.}}$ \bigcirc + HCl

∴ Correct choice : (4)

173. Which of the following is **not** permissible arrangement of electrons in an atom?

(1)
$$n = 5$$
, $\ell = 3$, $m = 0$, $s = +1/2$

(2)
$$n = 3$$
, $\ell = 2$, $m = -3$, $s = -1/2$

(3)
$$n = 3$$
, $\ell = 2$, $m = -2$, $s = -1/2$

(4)
$$n = 4$$
, $\ell = 0$, $m = 0$, $s = -?$

Sol: For $\ell = 2$, m cannot have -3 value

∴ Correct choice : (2)

174. The dissociation constants for acetic acid and HCN at 25° C are 1.5×10^{-5} and 4.5×10^{-10} respectively. The equilibrium constant for the equilibrium

$$CN^- + CH_3COOH \longrightarrow HCN + CH_3COO^-$$
 would be:

(1)
$$3.0 \times 10^{-5}$$
 (2) 3.0×10^{-4} (3) 3.0×10^{4} (4) 3.0×10^{5}

(2)
$$3.0 \times 10^{-4}$$

(3)
$$3.0 \times 10^4$$

(4)
$$3.0 \times 10^5$$

Sol: $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$; $K_a = 1.5 \times 10^{-5}$

$$H^+ + CN^- \longrightarrow HCN; \frac{1}{K_a} = \frac{1}{4.5 \times 10^{-10}}$$

$$\therefore$$
 K_a for CN⁻ + CH₃COOH \rightleftharpoons CH₃COO⁻ + HCN is

$$\frac{1.5 \times 10^{-5}}{4.5 \times 10^{-10}} = \frac{1}{3} \times 10^{5} = 3.33 \times 10^{4}$$

:. Correct choice: (3)

175. Propionic acid with $Br_2|P$ yields a dibromo product. Its structure would be:

$$\begin{array}{cc} & \operatorname{Br} \\ & | \\ \text{(1)} & \operatorname{H}-\operatorname{C} - \operatorname{CH}_2\operatorname{COOH} \\ & \operatorname{Br} \end{array}$$

(3)
$$CH_3 - COOH$$

$$Br$$

$$Br$$

Sol: α hydrogen is substituted by bromine

:. Correct choice: (3)

- 176. The values of ΔH and ΔS for the reaction, $C_{(graphite)} + CO_{2~(g)} \longrightarrow 2CO_{(g)}$ are 170 kJ and 170 JK⁻¹, respectively. This reaction will be spontaneous at
 - (1) 910 K
- (2) 1110 K
- (3) 510 K
- (4) 710 K

Sol: $\Delta G = \Delta H - T \Delta S$

$$0 = (170 \times 10^3 \text{ J}) - \text{T} (170 \text{ JK}^{-1})$$

T = 1000 K

For spontaneity, ΔG is – ve

Hence T should be > 1000 K

- ∴ Correct choice : (2)
- **177.** Copper crystallises in a face-centred cubic lattice with a unit cell length of 361 pm. What is the radius of copper atom in pm?
 - **(1)** 157
- (2) 181
- (3) 108
- **(4)** 128

Sol: a $\sqrt{2} = 4 \text{ r}$

$$r = \frac{a \times 1.414}{4} = \frac{361 \times 1.414}{4} = 128 \text{ pm}$$

∴ Correct choice : (4)

178. Predict the product:

$$(1) \bigcirc \stackrel{\text{CH}_3}{\longrightarrow} \text{N} - \text{NO}_2$$

$$(4) \bigcirc \qquad \stackrel{\text{CH}_3}{\longrightarrow} N - N = O$$

Sol: Secondary amine with $(NaNO_2 + HCl)$ gives a nitroso product

∴ Correct choice : (4)

- 179. $H_2COH \cdot CH_2OH$ on heating with periodic acid gives:
 - (1) 2 HCOOH

(2) | CHO

(3) $2 \frac{H}{H} C = O$

- **(4)** 2 CO₂
- $\begin{array}{ccc} & \mathrm{CH_2OH} & & \mathrm{HIO_4} \\ & --|_{---} & & & \mathrm{CH_2OH} & \end{array} \rightarrow \mathrm{CH_2O} + \mathrm{CH_2O}$

- ∴ Correct choice : (3)
- **180.** According to MO theory which of the following lists ranks the nitrogen species in terms of increasing bond order?
 - (1) $N_2^{2-} < N_2^- < N_2$
- (2) $N_2 < N_2^{2-} < N_2^{-}$
- (3) $N_2^- < N_2^{2-} < N_2$
- (4) $N_2^- < N_2 < N_2^{2-}$

Sol: Bond order $N_2 = 3$

$$N_2^- = 2.5$$

$$N_2^{2-} = 2.0$$

- ∴ Correct choice : (1)
- **181.** Out of TiF_6^{2-} , COF_6^{3-} , Cu_2Cl_2 and NiCl_4^{2-} (Z of Ti = 22, CO = 27, Cu = 29, Ni = 28) the colourless species are:
 - (1) Cu_2Cl_2 and $NiCl_4^{2-}$
- (2) $\operatorname{TiF}_{6}^{2-}$ and $\operatorname{Cu}_{2}\operatorname{Cl}_{2}$
- (3) COF_6^{3-} and $NiCl_4^{2-}$
- (4) TiF_6^{2-} and COF_6^{3-}
- **Sol:** $Cu_2Cl_2(Cu^+ = 3d^{10})$

$$TiF_6^{2-}$$
 ($Ti^{4+} = 3d^0$)

∴ Correct choice : (2)

182.	Which of the	following	molecules	acts as	a Lewis	acid?
	(1) (CH ₃) ₂ O	(2)	$(CH_3)_3 P$		(3) (CH ₃) ₃ N

Sol: $(CH_3)_3$ B – is electron deficient

∴ Correct choice : (4)

:. Correct choice : (3)

(4) 2-Butene

(4) (CH₃)₃ B

183. The IUPAC name of the compound having the formula $CH \equiv C - CH = CH_2$ is:

(1) 1-butyn-3-ene (2) but-1-yne-3-ene (3) 1-butene-3-yne (4) 3-butene-1-yne

(3) 2-Butenol

184. Which of the following compounds will exhibit cis-trans (geometrical) isomerism?

∴ Correct choice : (4)

185. Which of the following **does not** show optical isomerism?

(2) 2-Butyne

(1)
$$[CO(NH_2)_3Cl_3]^0$$
 (2)

(1) Butanol

(4)
$$[CO (en)_2Cl_2]^+$$
 (en = ethylenediamine)

∴ Correct choice : (1)

186. Structures of some common polymers are given. Which one is **not** correctly presented?

Neoprene

(1)
$$- CH_2 - C = CH - CH_2 -$$

(2) Terylene

$$+ OC - COOCH_2 - CH_2 - O -)_n$$

(3) Nylon 66 $\text{[NH(CH}_2)_6 \text{ NH CO (CH}_2)_4 - \text{CO -]}_2$

(4) Teflon $(CF_2 - CF_2 -)_n$

Sol: Correct representation is
$$\begin{vmatrix} -CH_2 - C = CH - CH_2 - C \\ Cl \end{vmatrix}$$

∴ Correct choice : (1)

- **187.** The ionization constant of ammonium hydroxide is 1.77×10^{-5} at 298 K. Hydrolysis constant of ammonium chloride is:
 - (1) 6.50×10^{-12}

(2)
$$5.65 \times 10^{-13}$$

(3) 5.65×10^{-12}

(4)
$$5.65 \times 10^{-10}$$

Sol:
$$K_h = \frac{K_w}{K_b} = \frac{1 \times 10^{-14}}{1.77 \times 10^{-5}} = 5.65 \times 10^{-10}$$

: Correct choice: (4)

188. Consider the following reaction:

$$Phenol \xrightarrow{\ \ Zn \ dust \ \ } X \xrightarrow{CH_3Cl} X \xrightarrow{Alkaline \ KMnO_4} Z \ ,$$

the product Z is:

- the product Z is
- (1) Benzaldehyde (2) Benzoic acid
- (3) Benzene
- (4) Toluene

∴ Correct choice : (2)

- **189.** The equivalent conductance of $\frac{M}{32}$ solution of a weak monobasic acid is 8.0 mhos cm² and at infinite dilution is 400 mhos cm². The dissociation constant of this acid is:
 - (1) 1.25×10^{-6}
- (2) 6.25×10^{-4}
- (3) 1.25×10^{-4}
- **(4)** 1.25×10^{-5}

Sol:
$$\alpha = \frac{\Lambda}{\Lambda_{D}} = \frac{8.0}{400} = 2 \times 10^{-2}$$

$$K_a = \frac{C\alpha^2}{(1-\alpha)} \approx C\alpha^2 = \frac{1}{32} \times (2 \times 10^{-2})^2 = 1.25 \times 10^{-5}$$

:. Correct choice: (4)

	(1) hydrolys	sis of CH ₃ SiCl ₃ follo	wed by condensatior	n polymerisation
	(2) hydrolys	sis of (CH ₃) ₄ Si by ac	ldition polymerisatio	on
	(3) hydrolys	sis of (CH ₃) ₂ SiCl ₂ fo	llowed by condensat	ion polymerisation
	(4) hydrolys	sis of (CH ₃) ₃ SiCl foll	lowed by condensation	on polymerisation
				:. Correct choice : (3)
191.	From the foll	owing bond energies	s:	
	H – H bond e	energy: 431.37 kJ mo	ol ⁻¹	
	C = C bond e	nergy: 606.10 kJ mo	1 ⁻¹	
	C – C bond e	nergy: 336.49 kJ mo	1 ⁻¹	
	C – H bond e	nergy: 410.50 kJ mo	1^{-1}	
	Enthalpy for	the reaction,		
	н н	н н		
		H — > H C C	П	
		$\begin{array}{c} H \longrightarrow H - C - C \\ & \\ H & H \end{array}$	-11	
	н н	н н		
	will be:			
	(1) – 243.6 k.	J mol ⁻¹	(2) – 120.0 kJ	mol^{-1}
	(3) 553.0 kJ i	mol^{-1}	(4) 1523.6 kJ r	mol^{-1}
Sol:	$[(4 \times 410.5) +$	606.1 + 431.3)] - [(6	$6 \times 410.5) + 336.49$	$= -120.0 \text{ kJ mol}^{-1}$
				∴ Correct choice : (2)
192.	-	ogen and 64 g of ox ater produced in this		a steel vessel and exploded.
	(1) 3 mol	(2) 4 mol	(3) 1 mol	(4) 2 mol
Sol:	$H_2 +$	$\frac{1}{2} \mathrm{O}_2 \longrightarrow \mathrm{H}_2$	20	
	10	64		
	2	32		
	= 5 mol	= 2 mol		
	Oxygen is the	e limiting agent. He	nce 4 mole of water f	
102	A man and at the a fac		atoon meet evidiein m	∴ Correct choice : (2)
193.			e strongest oxidising	
	(1) Br ₂	(2) I ₂	(3) Cl ₂	(4) F ₂
				∴ Correct choice : (4)

190. The straight chain polymer is formed by:

194.	In which of the following molecules / ions BF_3 , NO_2^- , NH_2^- and H_2O , the central			
	atom is sp ² hybridized?			
	(1) NH_2^- and H_2^-O	(2) NO_2^- and H_2O		
	(3) BF_3 and NO_2^-	(4) NO_2^- and NH_2^-		
		: .	Correct choice : (3)	
195.		Nitrobenzene can be prepared from benzene by using a mixture of conc. ${\rm HNO_3}$ and conc. ${\rm H_2SO_4}$ in the mixture, nitric acid acts as a/an:		
	(1) acid (2) base	(3) catalyst	(4) reducing agent	
Sol:	${\rm HO\ NO}_2 + {\rm H_2SO_4} {\longrightarrow} {\rm NO}_2^{\ +} + {\rm H_2O} + \\$	${ m HSO}_4^-$		
	Nitric acid acts as a base by accepting	a proton.		
		:.	Correct choice : (2)	
196.	Which of the following complex ions is	s expected to absorb visi	ble light?	
	(1) [Ti (en) $_2$ (NH $_3$) $_2$] $^{4+}$	(2) [Cr (NH ₃) ₆] ^{3 +}		
	(3) $[\text{Zn (NH}_3)_6]^{2+}$	(4) [Sc (H ₂ O) ₃ (NH ₃) ₅	₃] ³⁺	
	(At. no. $Zn = 30$, $Sc = 21$, $Ti = 22$, $Cr =$: 24)		
Sol:	Cr^{3+} in the complex has unpaired electrons in the d orbital			
			Correct choice : (2)	
197.	What is the $[OH^-]$ in the final soluti HCl with 30.0 mL of 0.10 M Ba $(OH)_2$?		20.0 mL of 0.050 M	
	(1) 0.40 M (2) 0.0050 M	(3) 0.12 M	(4) 0.10 M	
Sol:	No. of m. equivalent of HCl = 20×0.0	5 = 1.0		
	No. of m. equivalent of Br $(OH)_2 = 30 \times 0.1 \times 2 = 6.0$			
	After neutralization, no. of milli equivalents in 50 ml. of solution = $(6-1) = 5$			
	No. of m. equivalent of OH is 5 in 50 ml			
	$[OH^{-}] = \frac{5 \times 100}{50} \times 10^{-3}$ (i.e.,) = 0.1 M			
			Correct choice : (4)	

198. Trichloroacetaldehyde, ${\rm CCl_3CHO}$ reacts with chlorobenzene in presence of sulphuric acid and produces:

(1)
$$Cl \longrightarrow C$$
 Cl H

(2)
$$Cl \xrightarrow{OH} Cl$$

$$Cl \xrightarrow{Cl} Cl$$

(4)
$$Cl \longrightarrow Cl$$

$$Cl \longrightarrow Cl$$

$$CH_{\circ}Cl$$

∴ Correct choice : (3)

- **199.** For the reaction $A + B \longrightarrow products$, it is observed that:
 - (a) on doubling the initial concentration of \boldsymbol{A} only, the rate of reaction is also doubled and
 - **(b)** on doubling the initial concentrations of both A and B, there is a change by a factor of 8 in the rate of the reaction.

The rate of this reaction is given by:

(1) rate =
$$k [A] [B]^2$$

(2) rate =
$$k [A]^2 [B]^2$$

(3) rate =
$$k [A] [B]$$

(4) rate =
$$k [A]^2 [B]$$

Sol: When concentration A is doubled, rate is doubled. Hence order with respect to A is one.

When concentrations of both A and B are doubled, rate increases by 8 times hence total order is $3\,$

: rate =
$$k [A]^1 [B]^2$$

order = 1 + 2 = 3

∴ Correct choice : (1)

- **200**. Which of the following hormones contains iodine?
 - (1) testosterone
- (2) adrenaline
- (3) thyroxine
- (4) insulin

∴ Correct choice : (3)